Skip to main content
Log in

Materials based on group IVA elements for alloying-type sodium storage

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

There are five elements in group IVA of the periodic table, i.e., carbon (C), silicon (Si), germanium (Ge), tin (Sn) and lead (Pb), of which Si, Ge, and Sn can be used as alloying-type electrode materials for sodium-ion batteries. Pb is also capable of alloying with sodium, but it is generally ruled out as the cause of toxicity. In recent years, materials based on Si, Ge, and Sn have been intensively exploited as sodium anodes because of their abundant resource and large capacity with reasonable working voltages. However, successful deployment of these anode materials needs to overcome kinetic and thermodynamic issues related to poor electrochemical activity, particle pulverization associated with large volume swelling, and formation of unstable solid-electrolyte interphase. A diversity of material strategies has been employed to address these difficulties, mainly leveraging on the knowledge recently advanced for lithium anodes. This review highlights such issues and provides valuable insights for possible solutions, which serves as a guide and inspiration for future material innovation for rechargeable batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hwang JY, Myung ST, Sun YK. Chem Soc Rev, 2017, 46: 3529–3614

    Article  CAS  PubMed  Google Scholar 

  2. Slater MD, Kim D, Lee E, Johnson CS. Adv Funct Mater, 2013, 23: 947–958

    Article  CAS  Google Scholar 

  3. Yabuuchi N, Kubota K, Dahbi M, Komaba S. Chem Rev, 2014, 114: 11636–11682

    Article  CAS  PubMed  Google Scholar 

  4. Kundu D, Talaie E, Duffort V, Nazar LF. Angew Chem Int Ed, 2015, 54: 3431–3448

    Article  CAS  Google Scholar 

  5. Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S. Phys Chem Chem Phys, 2014, 16: 15007–15028

    Article  CAS  PubMed  Google Scholar 

  6. Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L. Acc Chem Res, 2016, 49: 231–240

    Article  CAS  PubMed  Google Scholar 

  7. Kim Y, Ha KH, Oh SM, Lee KT. Chem Eur J, 2014, 20: 11980–11992

    Article  CAS  PubMed  Google Scholar 

  8. Hou H, Qiu X, Wei W, Zhang Y, Ji X. Adv Energy Mater, 2017, 7: 1602898

    Article  CAS  Google Scholar 

  9. Ni J, Li L, Lu J. ACS Energy Lett, 2018, 3: 1137–1144

    Article  CAS  Google Scholar 

  10. Ni J, Fu S, Wu C, Maier J, Yu Y, Li L. Adv Mater, 2016, 28: 2259–2265

    Article  CAS  PubMed  Google Scholar 

  11. Fu S, Ni J, Xu Y, Zhang Q, Li L. Nano Lett, 2016, 16: 4544–4551

    Article  CAS  PubMed  Google Scholar 

  12. Ni J, Wang W, Wu C, Liang H, Maier J, Yu Y, Li L. Adv Mater, 2017, 29: 1605607

    Article  CAS  Google Scholar 

  13. Peng L, Zhu Y, Chen D, Ruoff RS, Yu G. Adv Energy Mater, 2016, 6: 1600025

    Article  CAS  Google Scholar 

  14. Xiao Y, Lee SH, Sun YK. Adv Energy Mater, 2017, 7: 1601329

    Article  CAS  Google Scholar 

  15. Fan X, Mao J, Zhu Y, Luo C, Suo L, Gao T, Han F, Liou SC, Wang C. Adv Energy Mater, 2015, 5: 1500174

    Article  CAS  Google Scholar 

  16. Lu Y, Zhou P, Lei K, Zhao Q, Tao Z, Chen J. Adv Energy Mater, 2017, 7: 1601973

    Article  CAS  Google Scholar 

  17. Jache B, Adelhelm P. Angew Chem, 2014, 126: 10333–10337

    Article  Google Scholar 

  18. Ni J, Huang Y, Gao L. J Power Sources, 2013, 223: 306–311

    Article  CAS  Google Scholar 

  19. Li Y, Hu YS, Titirici MM, Chen L, Huang X. Adv Energy Mater, 2016, 6: 1600659

    Article  CAS  Google Scholar 

  20. Jung SC, Kim HJ, Kang YJ, Han YK. J Alloys Compd, 2016, 688: 158–163

    Article  CAS  Google Scholar 

  21. Chevrier VL, Ceder G. J Electrochem Soc, 2011, 158: A1011

    Article  CAS  Google Scholar 

  22. Wang X, Fan L, Gong D, Zhu J, Zhang Q, Lu B. Adv Funct Mater, 2016, 26: 1104–1111

    Article  CAS  Google Scholar 

  23. Zhang L, Hu X, Chen C, Guo H, Liu X, Xu G, Zhong H, Cheng S, Wu P, Meng J, Huang Y, Dou S, Liu H. Adv Mater, 2017, 29: 1604708

    Article  CAS  Google Scholar 

  24. Arrieta U, Katcho NA, Arcelus O, Carrasco J. Sci Rep, 2017, 7: 5350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marzouk A, Soto FA, Burgos JC, Balbuena PB, El-Mellouhi F. J Electrochem Soc, 2017, 164: A1644–A1650

    Article  CAS  Google Scholar 

  26. Wang C, Sun X, Li C, Wu G, Wang B, Wang Z, Meng Q, Yang L. J Alloys Compd, 2016, 654: 157–162

    Article  CAS  Google Scholar 

  27. Jung SC, Jung DS, Choi JW, Han YK. J Phys Chem Lett, 2014, 5: 1283–1288

    Article  CAS  PubMed  Google Scholar 

  28. Xu Y, Swaans E, Basak S, Zandbergen HW, Borsa DM, Mulder FM. Adv Energy Mater, 2015, 6: 1501436

    Article  CAS  Google Scholar 

  29. Jangid MK, Vemulapally A, Sonia FJ, Aslam M, Mukhopadhyay A. J Electrochem Soc, 2017, 164: A2559–A2565

    Article  CAS  Google Scholar 

  30. Lim CH, Huang TY, Shao PS, Chien JH, Weng YT, Huang HF, Hwang BJ, Wu NL. Electrochim Acta, 2016, 211: 265–272

    Article  CAS  Google Scholar 

  31. Legrain F, Manzhos S. J Power Sources, 2015, 274: 65–70

    Article  CAS  Google Scholar 

  32. Zhu J, Schwingenschlögl U. 2D Mater, 2016, 3: 035012

    Article  CAS  Google Scholar 

  33. Shi L, Zhao TS, Xu A, Xu JB. J Mater Chem A, 2016, 4: 16377–16382

    Article  CAS  Google Scholar 

  34. Guo GC, Wang D, Wei XL, Zhang Q, Liu H, Lau WM, Liu LM. J Phys Chem Lett, 2015, 6: 5002–5008

    Article  CAS  PubMed  Google Scholar 

  35. Yang JH, Zhang Y, Yin WJ, Gong XG, Yakobson BI, Wei SH. Nano Lett, 2016, 16: 1110–1117

    Article  CAS  PubMed  Google Scholar 

  36. Zhu Z, Guan J, Liu D, Tománek D. ACS Nano, 2015, 9: 8284–8290

    Article  CAS  PubMed  Google Scholar 

  37. Jiang H, Zhao T, Ren Y, Zhang R, Wu M. Sci Bull, 2017, 62: 572–578

    Article  CAS  Google Scholar 

  38. Duveau D, Israel SS, Fullenwarth J, Cunin F, Monconduit L. J Mater Chem A, 2016, 4: 3228–3232

    Article  CAS  Google Scholar 

  39. Ni J, Han Y, Gao L, Lu L. Electrochem Commun, 2013, 31: 84–87

    Article  CAS  Google Scholar 

  40. Wang G, Ni J, Wang H, Gao L. J Mater Chem A, 2013, 1: 4112–4118

    Article  CAS  Google Scholar 

  41. Ni J, Zhang L, Fu S, Savilov SV, Aldoshin SM, Lu L. Carbon, 2015, 92: 15–25

    Article  CAS  Google Scholar 

  42. Xiao X, Li X, Zheng S, Shao J, Xue H, Pang H. Adv Mater Interfaces, 2017, 4: 1600798

    Article  CAS  Google Scholar 

  43. Yue GH, Zhang XQ, Zhao YC, Xie QS, Zhang XX, Peng DL. RSC Adv, 2014, 4: 21450–21455

    Article  CAS  Google Scholar 

  44. Ni J, Li L. Adv Funct Mater, 2018, 28: 1704880

    Article  CAS  Google Scholar 

  45. Ni J, Fu S, Yuan Y, Ma L, Jiang Y, Li L, Lu J. Adv Mater, 2018, 30: 1704337

    Article  CAS  Google Scholar 

  46. Abel PR, Lin YM, de Souza T, Chou CY, Gupta A, Goodenough JB, Hwang GS, Heller A, Mullins CB. J Phys Chem C, 2013, 117: 18885–18890

    Article  CAS  Google Scholar 

  47. Lahiri A, Olschewski M, Gustus R, Borisenko N, Endres F. Phys Chem Chem Phys, 2016, 18: 14782–14786

    Article  CAS  PubMed  Google Scholar 

  48. Ni J, Jiang Y, Wu F, Maier J, Yu Y, Li L. Adv Funct Mater, 2018, 28: 1707179

    Article  CAS  Google Scholar 

  49. Kajita T, Itoh T. Electrochim Acta, 2016, 195: 192–198

    Article  CAS  Google Scholar 

  50. Kajita T, Itoh T. Phys Chem Chem Phys, 2017, 19: 1003–1009

    Article  CAS  PubMed  Google Scholar 

  51. Li W, Ke L, Wei Y, Guo S, Gan L, Li H, Zhai T, Zhou H. J Mater Chem A, 2017, 5: 4413–4420

    Article  CAS  Google Scholar 

  52. He H, Xu M, Yang J, He B, Xie J. Micro Nano Lett, 2017, 12: 777–780

    Article  CAS  Google Scholar 

  53. Mao M, Yan F, Cui C, Ma J, Zhang M, Wang T, Wang C. Nano Lett, 2017, 17: 3830–3836

    Article  CAS  PubMed  Google Scholar 

  54. Nam DH, Kim TH, Hong KS, Kwon HS. ACS Nano, 2014, 8: 11824–11835

    Article  CAS  PubMed  Google Scholar 

  55. Nam DH, Hong KS, Lim SJ, Kim TH, Kwon HS. J Phys Chem C, 2014, 118: 20086–20093

    Article  CAS  Google Scholar 

  56. Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L. Nano Lett, 2013, 13: 3093–3100

    Article  CAS  PubMed  Google Scholar 

  57. Liu J, Wen Y, van Aken PA, Maier J, Yu Y. Nano Lett, 2014, 14: 6387–6392

    Article  CAS  PubMed  Google Scholar 

  58. Zhang R, Wang Z, Ma W, Yu W, Lu S, Liu X. RSC Adv, 2017, 7: 29458–29463

    Article  CAS  Google Scholar 

  59. Kalubarme RS, Lee JY, Park CJ. ACS Appl Mater Interfaces, 2015, 7: 17226–17237

    Article  CAS  PubMed  Google Scholar 

  60. Qin B, Zhang H, Diemant T, Geiger D, Raccichini R, Behm RJ, Kaiser U, Varzi A, Passerini S. ACS Appl Mater Interfaces, 2017, 9: 26797–26804

    Article  CAS  PubMed  Google Scholar 

  61. Chen M, Chao D, Liu J, Yan J, Zhang B, Huang Y, Lin J, Shen ZX. Adv Mater, 2017, 27: 1606232

    Google Scholar 

  62. Wang K, Huang Y, Qin X, Wang M, Sun X, Yu M. ChemElectroChem, 2017, 4: 2308–2313

    Article  CAS  Google Scholar 

  63. Liu M, Liu Y, Zhang Y, Li Y, Zhang P, Yan Y, Liu T. Sci Rep, 2016, 6: 31496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ao X, Jiang J, Ruan Y, Li Z, Zhang Y, Sun J, Wang C. J Power Sources, 2017, 359: 340–348

    Article  CAS  Google Scholar 

  65. Fan L, Li X, Yan B, Feng J, Xiong D, Li D, Gu L, Wen Y, Lawes S, Sun X. Adv Energy Mater, 2016, 6: 1502057

    Article  CAS  Google Scholar 

  66. Yang L, Li S, Liu J, Zhu K, Liu S, Lei M. J Mater Chem A, 2017, 5: 1629–1636

    Article  CAS  Google Scholar 

  67. He P, Fang Y, Yu XY, Lou XWD. Angew Chem, 2017, 129: 12370–12373

    Article  Google Scholar 

  68. Zhu C, Kopold P, Li W, van Aken PA, Maier J, Yu Y. Adv Sci, 2015, 2: 1500200

    Article  CAS  Google Scholar 

  69. Choi J, Kim NR, Lim K, Ku K, Yoon HJ, Kang JG, Kang K, Braun PV, Jin HJ, Yun YS. Small, 2017, 13: 1700767

    Article  CAS  Google Scholar 

  70. Sun W, Rui X, Yang D, Sun Z, Li B, Zhang W, Zong Y, Madhavi S, Dou S, Yan Q. ACS Nano, 2015, 9: 11371–11381

    Article  CAS  PubMed  Google Scholar 

  71. Jiang Y, Wei M, Feng J, Ma Y, Xiong S. Energy Environ Sci, 2016, 9: 1430–1438

    Article  Google Scholar 

  72. Tu F, Xu X, Wang P, Si L, Zhou X, Bao J. J Phys Chem C, 2017, 121: 3261–3269

    Article  CAS  Google Scholar 

  73. Ni J, Zhao Y, Liu T, Zheng H, Gao L, Yan C, Li L. Adv Energy Mater, 2014, 4: 1400798

    Article  CAS  Google Scholar 

  74. Ni J, Li Y. Adv Energy Mater, 2016, 6: 1600278

    Article  CAS  Google Scholar 

  75. Li Q, Li Z, Zhang Z, Li C, Ma J, Wang C, Ge X, Dong S, Yin L. Adv Energy Mater, 2016, 6: 1600376

    Article  CAS  Google Scholar 

  76. Li W, Chou SL, Wang JZ, Kim JH, Liu HK, Dou SX. Adv Mater, 2014, 26: 4037–4042

    Article  CAS  PubMed  Google Scholar 

  77. Fan X, Gao T, Luo C, Wang F, Hu J, Wang C. Nano Energy, 2017, 38: 350–357

    Article  CAS  Google Scholar 

  78. Qian J, Xiong Y, Cao Y, Ai X, Yang H. Nano Lett, 2014, 14: 1865–1869

    Article  CAS  PubMed  Google Scholar 

  79. Liu J, Kopold P, Wu C, van Aken PA, Maier J, Yu Y. Energy Environ Sci, 2015, 8: 3531–3538

    Article  CAS  Google Scholar 

  80. Wang W, Zhang J, Yu DYW, Li Q. J Power Sources, 2017, 364: 420–425

    Article  CAS  Google Scholar 

  81. Xu Y, Peng B, Mulder FM. Adv Energy Mater, 2018, 8: 1701847

    Article  CAS  Google Scholar 

  82. Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT. Adv Mater, 2014, 26: 4139–4144

    Article  CAS  PubMed  Google Scholar 

  83. Lan D, Wang W, Li Q. Nano Energy, 2017, 39: 506–512

    Article  CAS  Google Scholar 

  84. Ni J, Fu S, Wu C, Zhao Y, Maier J, Yu Y, Li L. Adv Energy Mater, 2016, 6: 1502568

    Article  CAS  Google Scholar 

  85. Xia S, Ni J, Savilov SV, Li L. Nano Energy, 2018, 45: 407–412

    Article  CAS  Google Scholar 

  86. Ni J, Zhao Y, Chen J, Gao L, Lu L. Electrochem Commun, 2014, 44: 4–7

    Article  CAS  Google Scholar 

  87. Liang H, Ni J, Li L. Nano Energy, 2017, 33: 213–220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51672182, 51772197, 51872192), the Thousand Young Talents Plan, the Jiangsu Natural Science Foundation (BK20180002, BK20151219), the Key University Science Research Project of Jiangsu Province (17KJA430013), the 333 High-Level Talents Project in Jiangsu Province, the Six Talent Peaks Project in Jiangsu Province, and of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangfeng Ni or Liang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Sun, M., Ni, J. et al. Materials based on group IVA elements for alloying-type sodium storage. Sci. China Chem. 61, 1494–1502 (2018). https://doi.org/10.1007/s11426-018-9347-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9347-9

Keywords

Navigation