Skip to main content
Log in

High electro-catalytic graphite felt/MnO2 composite electrodes for vanadium redox flow batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A mild and simple synthesis process for large-scale vanadium redox flow batteries (VRFBs) energy storage systems is desirable. A graphite felt/MnO2 (GF-MNO) composite electrode with excellent electrocatalytic activity towards VO2+/VO2+ redox couples in a VRFB was synthesized by a one-step hydrothermal process. The resulting GF-MNO electrodes possess improved electrochemical kinetic reversibility of the vanadium redox reactions compared to pristine GF electrodes, and the corresponding energy efficiency and discharge capacity at 150 mA cm−2 are increased by 12.5% and 40%, respectively. The discharge capacity is maintained at 4.8 A h L−1 at the ultrahigh current density of 250 mA cm−2. Above all, 80% of the energy efficiency of the GFMNO composite electrodes is retained after 120 charge-discharge cycles at 150 mA cm−2. Furthermore, these electrodes demonstrated that more evenly distributed catalytic active sites were obtained from the MnO2 particles under acidic conditions. The proposed synthetic route is facile, and the raw materials are low cost and environmentally friendly. Therefore, these novel GFMNO electrodes hold great promise in large-scale vanadium redox flow battery energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu J, Zhang JG, Yang Z, Lemmon JP, Imhoff C, Graff GL, Li L, Hu J, Wang C, Xiao J, Xia G, Viswanathan VV, Baskaran S, Sprenkle V, Li X, Shao Y, Schwenzer B. Adv Funct Mater, 2013, 23: 929–946

    Article  CAS  Google Scholar 

  2. Sun YZ, Huang JQ, Zhao CZ, Zhang Q. Sci China Chem, 2017, 60: 1508–1526

    Article  CAS  Google Scholar 

  3. Zhang XD, Shi JL, Liang JY, Yin YX, Guo YG, Wan LJ. Sci China Chem, 2017, 60: 1554–1560

    Article  CAS  Google Scholar 

  4. Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M. Energy Environ Sci, 2016, 9: 102–106

    Article  CAS  Google Scholar 

  5. Pang WL, Zhang XH, Guo JZ, Li JY, Yan X, Hou BH, Guan HY, Wu XL. J Power Sources, 2017, 356: 80–88

    Article  CAS  Google Scholar 

  6. Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W. Chem Soc Rev, 2017, 46: 6816–6854

    Article  CAS  PubMed  Google Scholar 

  7. Zhang J, Yuan T, Wan H, Qian J, Ai X, Yang H, Cao Y. Sci China Chem, 2017, 60: 1546–1553

    Article  CAS  Google Scholar 

  8. Zeng YK, Zhao TS, An L, Zhou XL, Wei L. J Power Sources, 2015, 300: 438–443

    Article  CAS  Google Scholar 

  9. Pezeshki AM, Sacci RL, Veith GM, Zawodzinski TA, Mench MM. J Electrochem Soc, 2016, 163: A5202–A5210

    Article  CAS  Google Scholar 

  10. Houser J, Clement J, Pezeshki A, Mench MM. J Power Sources, 2016, 302: 369–377

    Article  CAS  Google Scholar 

  11. Oh K, Won S, Ju H. Electrochim Acta, 2015, 181: 238–247

    Article  CAS  Google Scholar 

  12. Wang W, Luo Q, Li B, Wei X, Li L, Yang Z. Adv Funct Mater, 2013, 23: 970–986

    Article  CAS  Google Scholar 

  13. Yao C, Zhang H, Liu T, Li X, Liu Z. J Power Sources, 2012, 218: 455–461

    Article  CAS  Google Scholar 

  14. Deng Q, Huang P, Zhou WX, Ma Q, Zhou N, Xie H, Ling W, Zhou CJ, Yin YX, Wu XW, Lu XY, Guo YG. Adv Energy Mater, 2017, 7: 1700461

    Article  CAS  Google Scholar 

  15. Liu Z, Li R, Chen J, Wu X, Zhang K, Mo J, Yuan X, Jiang H, Holze R, Wu Y. ChemElectroChem, 2017, 4: 2184–2189

    Article  CAS  Google Scholar 

  16. Sun CN, Delnick FM, Aaron DS, Papandrew AB, Mench MM, Zawodzinski TA. ECS Electrochem Lett, 2013, 2: A43–A45

    Article  CAS  Google Scholar 

  17. Cao J, Zhang H, Xu W, Li X. J Power Sources, 2014, 249: 84–91

    Article  CAS  Google Scholar 

  18. Ulaganathan M, Jain A, Aravindan V, Jayaraman S, Ling WC, Lim TM, Srinivasan MP, Yan Q, Madhavi S. J Power Sources, 2015, 274: 846–850

    Article  CAS  Google Scholar 

  19. Park M, Ryu J, Kim Y, Cho J. Energy Environ Sci, 2014, 7: 3727–3735

    Article  CAS  Google Scholar 

  20. Liu J, Wang ZA, Wu XW, Yuan XH, Hu JP, Zhou QM, Liu ZH, Wu YP. J Power Sources, 2015, 299: 301–308

    Article  CAS  Google Scholar 

  21. Zhang Y, Qian G, Huang C, Wang Y. J Power Sources, 2016, 324: 528–537

    Article  CAS  Google Scholar 

  22. Fetyan A, Derr I, Kayarkatte MK, Langner J, Bernsmeier D, Kraehnert R, Roth C. ChemElectroChem, 2015, 2: 2055–2060

    Article  CAS  Google Scholar 

  23. Cho YI, Park SJ, Hwang HJ, Lee JG, Jeon YK, Chu YH, Shul Y. ChemElectroChem, 2015, 2: 872–876

    Article  CAS  Google Scholar 

  24. Han P, Wang H, Liu Z, Chen X, Ma W, Yao J, Zhu Y, Cui G. Carbon, 2011, 49: 693–700

    Article  CAS  Google Scholar 

  25. Ryu J, Park M, Cho J. J Electrochem Soc, 2016, 163: A5144–A5149

    Article  CAS  Google Scholar 

  26. Wu X, Xu H, Xu P, Shen Y, Lu L, Shi J, Fu J, Zhao H. J Power Sources, 2014, 263: 104–109

    Article  CAS  Google Scholar 

  27. Wang WH, Wang XD. Electrochim Acta, 2007, 52: 6755–6762

    Article  CAS  Google Scholar 

  28. Flox C, Rubio-Garcia J, Nafria R, Zamani R, Skoumal M, Andreu T, Arbiol J, Cabot A, Morante JR. Carbon, 2012, 50: 2372–2374

    Article  CAS  Google Scholar 

  29. Li B, Gu M, Nie Z, Wei X, Wang C, Sprenkle V, Wang W. Nano Lett, 2014, 14: 158–165

    Article  CAS  PubMed  Google Scholar 

  30. Zhou H, Shen Y, Xi J, Qiu X, Chen L. ACS Appl Mater Interfaces, 2016, 8: 15369–15378

    Article  CAS  PubMed  Google Scholar 

  31. Wu H, Shi L, Lei J, Liu D, Qu D, Xie Z, Du X, Yang P, Hu X, Li J, Tang H. J Power Sources, 2016, 323: 90–96

    Article  CAS  Google Scholar 

  32. Wang S, Zhao X, Cochell T, Manthiram A. J Phys Chem Lett, 2012, 3: 2164–2167

    Article  CAS  PubMed  Google Scholar 

  33. Wu L, Shen Y, Yu L, Xi J, Qiu X. Nano Energy, 2016, 28: 19–28

    Article  CAS  Google Scholar 

  34. Park M, Jeon IY, Ryu J, Baek JB, Cho J. Adv Energy Mater, 2015, 5: 1401550

    Article  CAS  Google Scholar 

  35. Kim KJ, Park MS, Kim YJ, Kim JH, Dou SX, Skyllas-Kazacos M. J Mater Chem A, 2015, 3: 16913–16933

    Article  CAS  Google Scholar 

  36. Li W, Liu J, Yan C. Carbon, 2011, 49: 3463–3470

    Article  CAS  Google Scholar 

  37. Han P, Yue Y, Liu Z, Xu W, Zhang L, Xu H, Dong S, Cui G. Energy Environ Sci, 2011, 4: 4710–4717

    Article  CAS  Google Scholar 

  38. Han P, Wang X, Zhang L, Wang T, Yao J, Huang C, Gu L, Cui G. RSC Adv, 2014, 4: 20379–20381

    Article  CAS  Google Scholar 

  39. Park M, Jung Y, Kim J, Lee H, Cho J. Nano Lett, 2013, 13: 4833–4839

    Article  CAS  PubMed  Google Scholar 

  40. Jin J, Fu X, Liu Q, Liu Y, Wei Z, Niu K, Zhang J. ACS Nano, 2013, 7: 4764–4773

    Article  CAS  PubMed  Google Scholar 

  41. Dong X, Wang X, Wang J, Song H, Li X, Wang L, Chan-Park MB, Li CM, Chen P. Carbon, 2012, 50: 4865–4870

    Article  CAS  Google Scholar 

  42. Kim KJ, Park MS, Kim JH, Hwang U, Lee NJ, Jeong G, Kim YJ. Chem Commun, 2012, 48: 5455–5457

    Article  CAS  Google Scholar 

  43. Ejigu A, Edwards M, Walsh DA. ACS Catal, 2015, 5: 7122–7130

    Article  CAS  Google Scholar 

  44. He Z, Dai L, Liu S, Wang L, Li C. Electrochim Acta, 2015, 176: 1434–1440

    Article  CAS  Google Scholar 

  45. Jolivet JP, Cassaignon S, Chanéac C, Chiche D, Durupthy O, Portehault D. Compt Rendus Chim, 2010, 13: 40–51

    Article  CAS  Google Scholar 

  46. He Y, Du S, Li H, Cheng Q, Pavlinek V, Saha P. J Solid State Electrochem, 2016, 20: 1459–1467

    Article  CAS  Google Scholar 

  47. Gao C, Wang NF, Peng S, Liu SQ, Lei Y, Liang XX, Zeng SS, Zi HF. Electrochim Acta, 2013, 88: 193–202

    Article  CAS  Google Scholar 

  48. Kim KJ, Lee SW, Yim T, Kim JG, Choi JW, Kim JH, Park MS, Kim YJ. Sci Rep, 2014, 4: 6906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2016YFA0202500), the National Natural Science Foundation of China (51772093), the National key Research and Development Program of China (2017YFD0301507).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong-Wei Wu, Wen-Xin Zhou or Yu-Guo Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Deng, Q., Sheng, H. et al. High electro-catalytic graphite felt/MnO2 composite electrodes for vanadium redox flow batteries. Sci. China Chem. 61, 732–738 (2018). https://doi.org/10.1007/s11426-017-9235-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9235-6

Keywords

Navigation