Skip to main content
Log in

Selective electroreduction of carbon dioxide to formic acid on electrodeposited SnO2@N-doped porous carbon catalysts

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electrocatalytic reduction of CO2 is a promising route for energy storage and utilization. Herein we synthesized SnO2 nanosheets and supported them on N-doped porous carbon (N-PC) by electrodeposition for the first time. The SnO2 and N-PC in the SnO2@N-PC composites had exellent synergistic effect for electrocatalytic reduction of CO2 to HCOOH. The Faradaic efficiency of HCOOH could be as high as 94.1% with a current density of 28.4 mA cm−2 in ionic liquid-MeCN system. The reaction mechanism was proposed on the basis of some control experiments. This work opens a new way to prepare composite electrode for electrochemical reduction of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klankermayer J, Wesselbaum S, Beydoun K, Leitner W. Angew Chem Int Ed, 2016, 55: 7296–7343

    Article  CAS  Google Scholar 

  2. He Z, Liu H, Qian Q, Lu L, Guo W, Zhang L, Han B. Sci China Chem, 2017, 60: 927–933

    Article  CAS  Google Scholar 

  3. Yuan G, Zhao Y, Wu Y, Li R, Chen Y, Xu D, Liu Z. Sci China Chem, 2017, 60: 958–963

    Article  CAS  Google Scholar 

  4. Aresta M. Carbon Dioxide as Chemical Feedstock. Weinheim: Wiley-VCH, 2010

    Book  Google Scholar 

  5. Zhou H, Lu X. Sci China Chem, 2017, 60: 904–911

    Article  CAS  Google Scholar 

  6. Sakakura T, Choi JC, Yasuda H. Chem Rev, 2007, 107: 2365–2387

    Article  CAS  PubMed  Google Scholar 

  7. Luo R, Yang Z, Zhang W, Zhou X, Ji H. Sci China Chem, 2017, 60: 979–989

    Article  CAS  Google Scholar 

  8. Yi Z, Lan D, Wang Y, Chen L, Au C, Yin S. Sci China Chem, 2017, 60: 990–996

    Article  CAS  Google Scholar 

  9. Kimura T, Kamata K, Mizuno N. Angew Chem Int Ed, 2012, 51: 6700–6703

    Article  CAS  Google Scholar 

  10. Li X, He X, Liu X, He LN. Sci China Chem, 2017, 60: 841–852

    Article  CAS  Google Scholar 

  11. Qiao J, Liu Y, Hong F, Zhang J. Chem Soc Rev, 2014, 43: 631–675

    Article  CAS  PubMed  Google Scholar 

  12. Lu Q, Rosen J, ZhouY, Hutchings GS, Kimmel YC, Chen JG, Jiao F. Nat Commun, 2014, 5: 3242

    Article  CAS  PubMed  Google Scholar 

  13. Zhu Q, Ma J, Kang X, Sun X, Hu J, Yang G, Han B. Sci China Chem, 2016, 59: 551–556

    Article  CAS  Google Scholar 

  14. Zhu QG, Sun XF, Kang XC, Ma J, Qian QL, Han BX. Acta Phys-Chim Sin, 2016, 32: 261–266

    CAS  Google Scholar 

  15. Huff CA, Sanford MS. J Am Chem Soc, 2011, 133: 18122–18125

    Article  CAS  PubMed  Google Scholar 

  16. Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC. Science, 2012, 335: 1596–1596

    Article  CAS  PubMed  Google Scholar 

  17. Gao S, Jiao X, Sun Z, Zhang W, Sun Y, Wang C, Hu Q, Zu X, Yang F, Yang S, Liang L, Wu J, Xie Y. Angew Chem Int Ed, 2016, 55: 698–702

    Article  CAS  Google Scholar 

  18. Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y. Nature, 2016, 529: 68–71

    Article  CAS  Google Scholar 

  19. Hollingsworth N, Taylor SFR, Galante MT, Jacquemin J, Longo C, Holt KB, de Leeuw NH, Hardacre C. Angew Chem Int Ed, 2015, 54: 14164–14168

    Article  CAS  Google Scholar 

  20. Kang P, Zhang S, Meyer TJ, Brookhart M. Angew Chem Int Ed, 2014, 53: 8709–8713

    Article  CAS  Google Scholar 

  21. Zhang S, Kang P, Ubnoske S, Brennaman MK, Song N, House RL, Glass JT, Meyer TJ. J Am Chem Soc, 2014, 136: 7845–7848

    Article  CAS  PubMed  Google Scholar 

  22. Zhu DD, Liu JL, Qiao SZ. Adv Mater, 2016, 28: 3423–3452

    Article  CAS  PubMed  Google Scholar 

  23. Min X, Kanan MW. J Am Chem Soc, 2015, 137: 4701–4708

    Article  CAS  PubMed  Google Scholar 

  24. Ohkawa K, Hashimoto K, Fujishima A, Noguchi Y, Nakayama S. J ElectroAnal Chem, 1993, 345: 445–456

    Article  CAS  Google Scholar 

  25. Hornés A, Hungría AB, Bera P, Cámara AL, Fernández-García M, Martínez-Arias A, Barrio L, Estrella M, Zhou G, Fonseca JJ, Hanson JC, Rodriguez JA. J Am Chem Soc, 2010, 132: 34–35

    Article  CAS  PubMed  Google Scholar 

  26. Bao H, Zhang W, Hua Q, Jiang Z, Yang J, Huang W. Angew Chem Int Ed, 2011, 50: 12294–12298

    Article  CAS  Google Scholar 

  27. Feng Y, Zheng X. Nano Lett, 2010, 10: 4762–4766

    Article  CAS  PubMed  Google Scholar 

  28. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM. Acc Chem Res, 2010, 43: 58–67

    Article  CAS  PubMed  Google Scholar 

  29. Gadipelli S, Guo ZX. ChemSusChem, 2015, 8: 2123–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu B, Shioyama H, Akita T, Xu Q. J Am Chem Soc, 2008, 130: 5390–5391

    Article  CAS  PubMed  Google Scholar 

  31. Zou F, Hu X, Li Z, Qie L, Hu C, Zeng R, Jiang Y, Huang Y. Adv Mater, 2014, 26: 6622–6628

    Article  CAS  PubMed  Google Scholar 

  32. Zhong H, Wang J, Zhang Y, Xu W, Xing W, Xu D, Zhang Y, Zhang X. Angew Chem Int Ed, 2014, 53: 14235–14239

    Article  CAS  Google Scholar 

  33. Toyao T, Fujiwaki M, Miyahara K, Kim TH, Horiuchi Y, Matsuoka M. ChemSusChem, 2015, 8: 3905–3912

    Article  CAS  PubMed  Google Scholar 

  34. Kumar B, Atla V, Brian JP, Kumari S, Nguyen TQ, Sunkara M, Spurgeon JM. Angew Chem Int Ed, 2017, 56: 3645–3649

    Article  CAS  Google Scholar 

  35. Sun Y, Lei F, Gao S, Pan B, Zhou J, Xie Y. Angew Chem Int Ed, 2013, 52: 10569–10572

    Article  CAS  Google Scholar 

  36. Wei J, Hu YX, Liang Y, Kong BA, Zhang J, Song JC, Bao QL, Simon GP, Jiang SP, Wang H. Adv Funct Mater, 2015, 36: 5876–5777

    Article  Google Scholar 

  37. Hod I, Bury W, Karlin DM, Deria P, Kung CW, Katz MJ, So M, Klahr B, Jin D, Chung YW, Odom TW, Farha OK, Hupp JT. Adv Mater, 2014, 26: 6295–6300

    Article  CAS  PubMed  Google Scholar 

  38. Kang X, Zhu Q, Sun X, Hu J, Zhang J, Liu Z, Han B. Chem Sci, 2016, 7: 266–273

    Article  CAS  PubMed  Google Scholar 

  39. Sun X, Kang X, Zhu Q, Ma J, Yang G, Liu Z, Han B. Chem Sci, 2016, 7: 2883–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee J, Kim Y, Kim JK, Kim S, Min DH, Jang DJ. Appl Catal B-Environ, 2017, 205: 433–442

    Article  CAS  Google Scholar 

  41. Chen P, Wang LK, Wang G, Gao MR, Ge J, Yuan WJ, Shen YH, Xie AJ, Yu SH. Energy Environ Sci, 2014, 7: 4095–4103

    Article  CAS  Google Scholar 

  42. Wishart JF. Energ Environ Sci, 2009, 2: 956–961

    Article  CAS  Google Scholar 

  43. Huan TN, Simon P, Rousse G, Génois I, Artero V, Fontecave M. Chem Sci, 2017, 8: 742–747

    Article  CAS  PubMed  Google Scholar 

  44. Hu XM, Rønne MH, Pedersen SU, Skrydstrup T, Daasbjerg K. Angew Chem Int Ed, 2017, 56: 6468–6472

    Article  CAS  Google Scholar 

  45. Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI. Science, 2011, 334: 643–644

    Article  CAS  PubMed  Google Scholar 

  46. Corvo MC, Sardinha J, Menezes SC, Einloft S, Seferin M, Dupont J, Casimiro T, Cabrita EJ. Angew Chem Int Ed, 2013, 52: 13024–13027

    Article  CAS  Google Scholar 

  47. Gattrell M, Gupta N, Co A. J ElectroAnal Chem, 2006, 594: 1–19

    Article  CAS  Google Scholar 

  48. Wu J, Yadav RM, Liu M, Sharma PP, Tiwary CS, Ma L, Zou X, Zhou XD, Yakobson BI, Lou J, Ajayan PM. ACS Nano, 2015, 9: 5364–5371

    Article  CAS  PubMed  Google Scholar 

  49. Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA, HaaschR, Abiade J, Yarin AL, Salehi-Khojin A. Nat Commun, 2013, 4: 3819

    Google Scholar 

  50. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ. J Am Chem Soc, 2004, 126: 5300–5308

    Article  CAS  PubMed  Google Scholar 

  51. Sun X, Zhu Q, Kang X, Liu H, Qian Q, Zhang Z, Han B. Angew Chem Int Ed, 2016, 55: 6771–6775

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21673248, 21533011), the National Key Research and Development Program of China (2017YFA0403102), and Chinese Academy of Sciences (QYZDY-SSW-SLH013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofu Sun or Buxing Han.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Sun, X., Ma, J. et al. Selective electroreduction of carbon dioxide to formic acid on electrodeposited SnO2@N-doped porous carbon catalysts. Sci. China Chem. 61, 228–235 (2018). https://doi.org/10.1007/s11426-017-9118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9118-6

Keywords

Navigation