Skip to main content
Log in

Regulating sulfur removal efficiency of fuels by Lewis acidity of ionic liquids

  • Articles
  • SPECIAL TOPIC · Ionic Liquids: Energy, Materials & Environment
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

It is urgent to develop a new deep desulfurization process of fuels as the environmental pollution increases seriously. In this work, a series of Lewis acidic ionic liquids (ILs) [C 34 MPy]Cl/nZnCl2 (n=1, 1.5, 2, 3) were synthesized and used in extraction and catalytic oxidative desulfurization (ECOD) of the fuels. The effects of the Lewis acidity of ILs, the molar ratio of H2O2/sulfur, temperatures, and different substrates including dibenzothiophene (DBT), benzothiophene (BT) and thiophene (TS), on sulfur removal were investigated. The results indicated that [C 34 MPy]Cl/3ZnCl2 presented near 100% DBT removal of model oil under conditions of 323 K, H2O2/DBT molar ratio 6:1. Kinetics for the removal of DBT, BT and TS by the [C 34 MPy]Cl/3ZnCl2-H2O2 system at 323 K is first-order with the apparent rate constants of 1.1348, 0.2226 and 0.0609 h-1, and the calculated apparent activation energies for DBT, BT and TS were 61.13, 60.66, and 68.14 kJ/mol from 298 to 308 K, respectively. After six cycles of the regenerated [CC 34 MPy]Cl/3ZnCl2, the sulfur removal had a slight decrease. [CC 34 MPy]Cl/3ZnCl2 showed a good desulfurization performance under optimal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Di Giuseppe A, Crucianelli M, De Angelis F, Crestini C, Saladino R. Appl Catal B: Environ, 2009, 89: 239–245

    Article  Google Scholar 

  2. Chandra Srivastava V. RSC Adv, 2012, 2: 759–783

    Article  CAS  Google Scholar 

  3. Zhu WS, Li HM, Jiang X, Yan YS, Lu JD, Xia JX. Energy Fuels, 2007, 21: 2514–2516

    Article  CAS  Google Scholar 

  4. Li FT, Kou CG, Sun ZM, Hao YJ, Liu RH, Zhao DS. J Hazard Mater, 2012, 205–206: 164–170

    Article  Google Scholar 

  5. Campos-Martin JM, Capel-Sanchez MC, Perez-Presas P, Fierro JLG. J Chem Technol Biotechnol, 2010, 85: 879–890

    Article  CAS  Google Scholar 

  6. Gao HS, Li YG, Wu Y, Luo MF, Li Q, Xing JM, Liu HZ. Energy Fuels, 2009, 23: 2690–2694

    Article  CAS  Google Scholar 

  7. Zhang J, Wang AJ, Li X, Ma XH. J Catal, 2011, 279: 269–275

    Article  CAS  Google Scholar 

  8. Nie Y, Li CX, Sun AJ, Meng H, Wang ZH. Energy Fuels, 2006, 20: 2083–2087

    Article  CAS  Google Scholar 

  9. He LN, Li HM, Zhu WS, Guo JX, Jiang X, Lu JD, Yan YS. Ind Eng Chem Res, 2008, 47: 6890–6895

    Article  CAS  Google Scholar 

  10. Kulkarni PS, Afonso CAM. Green Chem, 2010, 12: 1139–1149

    Article  CAS  Google Scholar 

  11. Wang T, Zhao DS, Sun ZM, Li FT, Song YQ, Kou CG. Pet Sci Technol, 2012, 30: 385–392

    Article  Google Scholar 

  12. Lu L, Cheng SF, Gao JB, Gao GH, He MY. Energy Fuels, 2007, 21: 383–384

    Article  CAS  Google Scholar 

  13. Xu D, Zhu WS, Li HM, Zhang JT, Zou F, Shi H, Yan YS. Energy Fuels, 2009, 23: 5929–5933

    Article  CAS  Google Scholar 

  14. Wang JL, Zhao DS, Li KX. Energy Fuels, 2010, 24: 2527–2529

    Article  CAS  Google Scholar 

  15. Francisco M, Arce A, Soto A. Fluid Phase Equilib, 2010, 294: 39–48

    Article  CAS  Google Scholar 

  16. Li HM, Zhu WS, Wang Y, Zhang JT, Lu JD, Yan YS. Green Chem, 2009, 11: 810–815

    Article  CAS  Google Scholar 

  17. Schmidt R. Energy Fuels, 2008, 22: 1774–1778

    Article  CAS  Google Scholar 

  18. Ko NH, Lee JS, Huh ES, Lee H, Jung KD, Kim HS, Cheong M. Energy Fuels, 2008, 22: 1687–1690

    Article  CAS  Google Scholar 

  19. Chao Y, Li H, Zhu W, Zhu G, Yan Y. Pet Sci Technol, 2010, 28: 1242–1249

    Article  CAS  Google Scholar 

  20. Ding YX, Zhu WS, Li HM, Jiang W, Zhang M, Duan YQ, Chang YH. Green Chem, 2011, 13: 1210–1216

    Article  CAS  Google Scholar 

  21. Yu GR, Zhao JJ, Song DD, Asumana C, Zhang XY, Chen XC. Ind Eng Chem Res, 2011, 50: 11690–11697

    Article  CAS  Google Scholar 

  22. Nie Y, Gong X, Gao HS, Zhang XP, Zhang SJ. Sci China Chem, 2014, 57: 1766–1773

    Article  CAS  Google Scholar 

  23. Dupont J, Suarez PAZ, Umpierre AP, De Souza RF. Catal Lett, 2001, 73: 2–4

    Article  Google Scholar 

  24. Li FT, Liu RH, Wen JH, Zhao DS, Sun ZM, Liu Y. Green Chem, 2009, 11: 883–888

    Article  CAS  Google Scholar 

  25. Chen XC, Song DD, Asumana C, Yu GR. J Mol Catal A: Chem, 2012, 359: 8–13

    Article  CAS  Google Scholar 

  26. Huang WL, Zhu WS, Li HM, Shi H, Zhu GP, Liu H, Chen GY. Ind Eng Chem Res, 2010, 49: 8998–9003

    Article  CAS  Google Scholar 

  27. Zhao DS, Wang JL, Zhou EP. Green Chem, 2007, 9: 1219–1222

    Article  CAS  Google Scholar 

  28. Gao HS, Guo C, Xing JM, Liu HZ. Sep Sci Technol, 2012, 47: 325–330

    Article  Google Scholar 

  29. Xu JH, Zhao S, Chen W, Wang M, Song YF. Chem Eur J, 2012, 18: 4775–4781

    Article  CAS  Google Scholar 

  30. Zhao DS, Li FT, Liu R, Shan HD. Energy Fuels, 2008, 22: 3065–3069

    Article  CAS  Google Scholar 

  31. Ambika SPP, Chauhan SMS. New J Chem, 2012, 36: 650–655

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suojiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Y., Dong, Y., Gao, H. et al. Regulating sulfur removal efficiency of fuels by Lewis acidity of ionic liquids. Sci. China Chem. 59, 526–531 (2016). https://doi.org/10.1007/s11426-016-5563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5563-6

Keywords

Navigation