Skip to main content
Log in

Recent advances in the preparation of Fmoc-SPPS-based peptide thioester and its surrogates for NCL-type reactions

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Solid phase peptide synthesis (SPPS) based on Fmoc chemistry has become a commonly used technique in peptide chemistry, as it can be easily conducted using automated machine, and not requiring highly toxic HF in comparison to Boc-SPPS. With the fast development in the emerging field of protein chemical synthesis, many efforts have been endeavored aiming to find more efficient methods for preparing peptide fragments required in ligation reactions. This review briefly summarizes recent advances in the engineering and modification of Fmoc-SPPS-derived peptides, which can be used as the N-terminal fragments in a native chemical ligation (NCL) or NCL-type ligation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dawson PE, Muir TW, Clark-Lewis I, Kent SBH. Science, 1994, 266: 776–779

    Article  CAS  Google Scholar 

  2. Merrifield RB. J Am Chem Soc, 1963, 85: 2149–2154

    Article  CAS  Google Scholar 

  3. Li X, Kawakami T, Aimoto S. Tetrahedron Lett, 1998, 39: 8669–8672

    Article  CAS  Google Scholar 

  4. Clippingdale AB, Barrow CJ, Wade JD. J Peptide Sci, 2000, 6: 225–234

    Article  CAS  Google Scholar 

  5. Bu X, Xie G, Law CW, Guo Z. Tetrahedron Lett, 2002, 43: 2419–2422

    Article  CAS  Google Scholar 

  6. Hasegawa K, Sha YL, Bang JK, Kawakami T, Akaji K, Aimoto S. Lett Peptide Sci, 2001, 8: 277–284

    CAS  Google Scholar 

  7. Raz R. Rademann J. Org Lett, 2011, 13: 1606–1609

    Article  CAS  Google Scholar 

  8. Ingenito R, Bianchi E, Fattori D, Pessi A. J Am Chem Soc, 1999, 121: 11369–11374

    Article  CAS  Google Scholar 

  9. Shin Y, Winans KA, Backes BJ, Kent SBH, Ellman JA, Bertozzi CR. J Am Chem Soc, 1999, 121: 11684–11689

    Article  CAS  Google Scholar 

  10. Burlina F, Morris C, Behrendt R, White P, Offer J. Chem Commun, 2012, 48: 2579–2581

    Article  CAS  Google Scholar 

  11. Mende F, Seitz O. Angew Chem Int Ed, 2011, 50: 1232–1240

    Article  CAS  Google Scholar 

  12. Zheng JS, Tang S, Huang YC, Liu L. Acc Chem Res, 2013, 46: 2475–2484

    Article  CAS  Google Scholar 

  13. Thomas F. J Pept Sci, 2013, 19: 141–147

    Article  CAS  Google Scholar 

  14. Kawakami T. Protein ligation and total synthesis I. In: Liu L, Ed. Peptide Thioester Formation via an Intramolecular N to S Acyl Shift for Peptide Ligation. Switzerland: Springer International Publishing, 2014. 107–135

  15. Melnyk O, Agouridas V. Curr Opin Chem Biol, 2014, 22: 137–145

    Article  CAS  Google Scholar 

  16. Huang YC, Fang GM, Liu L. Natl Sci Rev, 2016: 1–10

    Google Scholar 

  17. Huang Y, Liu L. Sci China Chem, 2015, 58: 1779–1781

    Article  CAS  Google Scholar 

  18. Pedersen SL, Jensen K. Instruments for automated peptide synthesis. In: Jensen KJ, Tofteng Shelton P, Pedersen SL, Eds. Peptide Synthesis and Applications. Vol. 1047. Methods in Molecular Biology. Totowa: Humana Press, 2013. 215–224

    Chapter  Google Scholar 

  19. Jones JH, Witty MJ. J Chem Soc Perkin Trans 1, 1979, 3203

    Google Scholar 

  20. Sakakibara S. Biopolymers, 1995, 37: 17–28

    Article  CAS  Google Scholar 

  21. von Eggelkraut-Gottanka R, Klose A, Beck-Sickinger AG, Beyermann M. Tetrahedron Lett, 2003, 44: 3551–3554

    Article  CAS  Google Scholar 

  22. Flemer S. J Pept Sci, 2009, 15: 693–696

    Article  CAS  Google Scholar 

  23. Mezo AR, Cheng RP, Imperiali B. J Am Chem Soc, 2001, 123: 3885–3891

    Article  CAS  Google Scholar 

  24. Kajihara Y, Yoshihara A, Hirano K, Yamamoto N. Carbohyd Res, 2006, 341: 1333–1340

    Article  CAS  Google Scholar 

  25. Nagalingam A, Radford S, Warriner S. Synlett, 2007, 2007: 2517–2520

    Article  CAS  Google Scholar 

  26. Williams MW, Young GT. J Chem Soc, 1963, 881

    Google Scholar 

  27. Barlos K, Gatos D. Biopolymers, 1999, 51: 266–278

    Article  CAS  Google Scholar 

  28. Heinlein C, Varón Silva D, Tröster A, Schmidt J, Gross A, Unverzagt C. Angew Chem Int Ed, 2011, 50: 6406–6410

    Article  CAS  Google Scholar 

  29. Asahina Y, Komiya S, Ohagi A, Fujimoto R, Tamagaki H, Nakagawa K, Sato T, Akira S, Takao T, Ishii A, Nakahara Y, Hojo H. Angew Chem Int Ed, 2015, 54: 8226–8230

    Article  CAS  Google Scholar 

  30. Ding H, Shigenaga A, Sato K, Morishita K, Otaka A. Org Lett, 2011, 13: 5588–5591

    Article  CAS  Google Scholar 

  31. Aussedat B, Fasching B, Johnston E, Sane N, Nagorny P, Danishefsky SJ. J Am Chem Soc, 2012, 134: 3532–3541

    Article  CAS  Google Scholar 

  32. Fernández-Tejada A, Vadola PA, Danishefsky SJ. J Am Chem Soc, 2014, 136: 8450–8458

    Article  CAS  Google Scholar 

  33. Hackeng TM, Griffin JH, Dawson PE. Proc Natl Acad Sci USA, 1999, 96: 10068–10073

    Article  CAS  Google Scholar 

  34. Pollock SB, Kent SBH. Chem Commun, 2011, 47: 2342–2344

    Article  CAS  Google Scholar 

  35. Bodanszky M. Nature, 1955, 175: 685

    Article  CAS  Google Scholar 

  36. Wan Q, Chen J, Yuan Y, Danishefsky SJ. J Am Chem Soc, 2008, 130: 15814–15816

    Article  CAS  Google Scholar 

  37. Durek T, Alewood PF. Angew Chem Int Ed, 2011, 50: 12042–12045

    Article  CAS  Google Scholar 

  38. Raibaut L, Seeberger P, Melnyk O. Org Lett, 2013, 15: 5516–5519

    Article  CAS  Google Scholar 

  39. Nakamura T, Shigenaga A, Sato K, Tsuda Y, Sakamoto K, Otaka A. Chem Commun, 2014, 50: 58–60

    Article  CAS  Google Scholar 

  40. Nakamura T, Sato K, Naruse N, Kitakaze K, Inokuma T, Hirokawa T, Shigenaga A, Itoh K, Otaka A. ChemBioChem, 2016, 17: 1986–1992

    Article  CAS  Google Scholar 

  41. Hinderaker MP, Raines RT. Protein Sci, 2003, 12: 1188–1194

    Article  CAS  Google Scholar 

  42. Hodges JA, Raines RT. Org Lett, 2006, 8: 4695–4697

    Article  CAS  Google Scholar 

  43. Choudhary A, Kamer KJ, Powner MW, Sutherland JD, Raines RT. ACS Chem Biol, 2010, 5: 655–657

    Article  CAS  Google Scholar 

  44. Gui Y, Qiu L, Li Y, Li H, Dong S. J Am Chem Soc, 2016, 138: 4890–4899

    Article  CAS  Google Scholar 

  45. Wan Q, Danishefsky SJ. Angew Chem Int Ed, 2007, 46: 9248–9252

    Article  CAS  Google Scholar 

  46. Ali Shah MI, Xu ZY, Liu L, Jiang YY, Shi J. RSC Adv, 2016, 6: 68312–68321

    Article  CAS  Google Scholar 

  47. Botti P, Villain M, Manganiello S, Gaertner H. Org Lett, 2004, 6: 4861–4864

    Article  CAS  Google Scholar 

  48. George EA, Novick RP, Muir TW. J Am Chem Soc, 2008, 130: 4914–4924

    Article  CAS  Google Scholar 

  49. Liu F, Mayer JP. J Org Chem, 2013, 78: 9848–9856

    Article  CAS  Google Scholar 

  50. Warren JD, Miller JS, Keding SJ, Danishefsky SJ. J Am Chem Soc, 2004, 126: 6576–6578

    Article  CAS  Google Scholar 

  51. Zheng JS, Cui HK, Fang GM, Xi WX, Liu L. ChemBioChem, 2010, 11: 511–515

    Article  CAS  Google Scholar 

  52. Fang GM, Cui HK, Zheng JS, Liu L. Chem Eur J Chem Bio, 2010, 11: 1061–1065

    Article  CAS  Google Scholar 

  53. Hojo H, Onuma Y, Akimoto Y, Nakahara Y, Nakahara Y. Tetrahedron Lett, 2007, 48: 25–28

    Article  CAS  Google Scholar 

  54. Asahina Y, Nabeshima K, Hojo H. Tetrahedron Lett, 2015, 56: 1370–1373

    Article  CAS  Google Scholar 

  55. Terrier VP, Adihou H, Arnould M, Delmas AF, Aucagne V. Chem Sci, 2016, 7: 339–345

    Article  CAS  Google Scholar 

  56. Shah NH, Muir TW. Chem Sci, 2014, 5: 446–461

    Article  CAS  Google Scholar 

  57. Ollivier N, Dheur J, Mhidia R, Blanpain A, Melnyk O. Org Lett, 2010, 12: 5238–5241

    Article  CAS  Google Scholar 

  58. Hou W, Zhang X, Li F, Liu CF. Org Lett, 2011, 13: 386–389

    Article  CAS  Google Scholar 

  59. Ollivier N, Vicogne J, Vallin A, Drobecq H, Desmet R, El Mahdi O, Leclercq B, Goormachtigh G, Fafeur V, Melnyk O. Angew Chem Int Ed, 2012, 51: 209–213

    Article  CAS  Google Scholar 

  60. Raibaut L, Drobecq H, Melnyk O. Org Lett, 2015, 17: 3636–3639

    Article  CAS  Google Scholar 

  61. Raibaut L, Cargoët M, Ollivier N, Chang YM, Drobecq H, Boll E, Desmet R, Monbaliu JCM, Melnyk O. Chem Sci, 2016, 7: 2657–2665

    Article  CAS  Google Scholar 

  62. Zheng JS, Chang HN, Wang FL, Liu L. J Am Chem Soc, 2011, 133: 11080–11083

    Article  CAS  Google Scholar 

  63. Zheng JS, Chen X, Tang S, Chang HN, Wang FL, Zuo C. Org Lett, 2014, 16: 4908–4911

    Article  CAS  Google Scholar 

  64. Otaka A, Sato K, Shigenaga A. Protein ligation and total synthesis II. In: Liu L, Ed. Chemical Synthesis of Proteins Using N-sulfanylethylanilide Peptides, Based on N-S Acyl Transfer Chemistry. Switzerland: Springer International Publishing, 2014. 33–56

    Google Scholar 

  65. Tsuda S, Shigenaga A, Bando K, Otaka A. Org Lett, 2009, 11: 823–826

    Article  CAS  Google Scholar 

  66. Eto M, Naruse N, Morimoto K, Yamaoka K, Sato K, Tsuji K, Inokuma T, Shigenaga A, Otaka A. Org Lett, 2016, 18: 4416–4419

    Article  CAS  Google Scholar 

  67. Aihara K, Yamaoka K, Naruse N, Inokuma T, Shigenaga A, Otaka A. Org Lett, 2016, 18: 596–599

    Article  CAS  Google Scholar 

  68. Zacharie B, Sauvé G, Penney C. Tetrahedron, 1993, 49: 10489–10500

    Article  CAS  Google Scholar 

  69. Pascal R, Chauvey D, Sola R. Tetrahedron Lett, 1994, 35: 6291–6294

    Article  CAS  Google Scholar 

  70. Blanco-Canosa JB, Dawson PE. Angew Chem Int Ed, 2008, 47: 6851–6855

    Article  CAS  Google Scholar 

  71. Tiefenbrunn TK, Blanco-Canosa J, Dawson PE. Biopolymers, 2010, 94: 405–413

    Article  CAS  Google Scholar 

  72. Siman P, Blatt O, Moyal T, Danieli T, Lebendiker M, Lashuel HA, Friedler A, Brik A. ChemBioChem, 2011, 12: 1097–1104

    Article  CAS  Google Scholar 

  73. Fauvet B, Butterfield SM, Fuks J, Brik A, Lashuel HA. Chem Commun, 2013, 49: 9254–9256

    Article  CAS  Google Scholar 

  74. Okamoto R, Mandal K, Sawaya MR, Kajihara Y, Yeates TO, Kent SBH. Angew Chem Int Ed, 2014, 53: 5194–5198

    CAS  Google Scholar 

  75. White PD, Behrendt R. J Pep Sci, 2010, 16: 71–72

    Article  CAS  Google Scholar 

  76. Mahto SK, Howard CJ, Shimko JC, Ottesen JJ. ChemBioChem, 2011, 12: 2488–2494

    Article  CAS  Google Scholar 

  77. Shimko JC, North JA, Bruns AN, Poirier MG, Ottesen JJ. J Mol Biol, 2011, 408: 187–204

    Article  CAS  Google Scholar 

  78. Blanco-Canosa JB, Nardone B, Albericio F, Dawson PE. J Am Chem Soc, 2015, 137: 7197–7209

    Article  CAS  Google Scholar 

  79. Wang JX, Fang GM, He Y, Qu DL, Yu M, Hong ZY, Liu L. Angew Chem Int Ed, 2015, 54: 2194–2198

    Article  CAS  Google Scholar 

  80. Sato T, Saito Y, Aimoto S. J Peptide Sci, 2005, 11: 410–416

    Article  CAS  Google Scholar 

  81. Johnson ECB, Kent SBH. Tetrahedron Lett, 2007, 48: 1795–1799

    Article  CAS  Google Scholar 

  82. Bang D, Kent SBH. Proc Natl Acad Sci USA, 2005, 102: 5014–5019

    Article  CAS  Google Scholar 

  83. Gordon WR, Bang D, Hoff WD, Kent SBH. Bioorgan Med Chem, 2013, 21: 3436–3442

    Article  CAS  Google Scholar 

  84. Curtius T. J Prakt Chem, 1904, 70: 57–72

    Article  CAS  Google Scholar 

  85. Yanaihara N, Yanaihara C, Dupuis G, Beacham J, Camble R, Hofmann K. J Am Chem Soc, 1969, 91: 2184–2185

    Article  CAS  Google Scholar 

  86. Felix AM, Merrifield RB. J Am Chem Soc, 1970, 92: 1385–1391

    Article  CAS  Google Scholar 

  87. Romovacek H, Dowd SR, Kawasaki K, Nishi N, Hofmann K. J Am Chem Soc, 1979, 101: 6081–6091

    Article  CAS  Google Scholar 

  88. Fang GM, Li YM, Shen F, Huang YC, Li JB, Lin Y, Cui HK, Liu L. Angew Chem Int Ed, 2011, 50: 7645–7649

    Article  CAS  Google Scholar 

  89. Fang GM, Wang JX, Liu L. Angew Chem Int Ed, 2012, 51: 10347–10350

    Article  CAS  Google Scholar 

  90. Zheng JS, Tang S, Qi YK, Wang ZP, Liu L. Nat Protoc, 2013, 8: 2483–2495

    Article  CAS  Google Scholar 

  91. Tang S, Si YY, Wang ZP, Mei KR, Chen X, Cheng JY, Zheng JS, Liu L. Angew Chem Int Ed, 2015, 54: 5713–5717

    Article  CAS  Google Scholar 

  92. Li YM, Yang MY, Huang YC, Li YT, Chen PR, Liu L. ACS Chem Biol, 2012, 7: 1015–1022

    Article  CAS  Google Scholar 

  93. Reif A, Siebenhaar S, Tröster A, Schmälzlein M, Lechner C, Velisetty P, Gottwald K, Pöhner C, Boos I, Schubert V, Rose-John S, Unverzagt C. Angew Chem Int Ed, 2014, 53: 12125–12131

    Article  CAS  Google Scholar 

  94. Chang HN, Liu BY, Qi YK, Zhou Y, Chen YP, Pan KM, Li WW, Zhou XM, Ma WW, Fu CY, Qi YM, Liu L, Gao YF. Angew Chem Int Ed, 2015, 54: 11760–11764

    Article  CAS  Google Scholar 

  95. Murakami M, Kiuchi T, Nishihara M, Tezuka K, Okamoto R, Izumi M, Kajihara Y. Sci Adv, 2016, 2: e1500678

    Article  Google Scholar 

  96. Tsuda Y, Shigenaga A, Tsuji K, Denda M, Sato K, Kitakaze K, Nakamura T, Inokuma T, Itoh K, Otaka A. ChemOpen, 2015, 4: 448–452

    CAS  Google Scholar 

  97. Miyajima R, Tsuda Y, Inokuma T, Shigenaga A, Imanishi M, Futaki S, Otaka A. Biopolymers, 2016, 106: 531–546

    Article  CAS  Google Scholar 

  98. Sharma I, Crich D. J Org Chem, 2011, 76: 6518–6524

    Article  CAS  Google Scholar 

  99. Hogenauer TJ, Wang Q, Sanki AK, Gammon AJ, Chu CHL, Kaneshiro CM, Kajihara Y, Michael K. Org Biomol Chem, 2007, 5: 759–762

    Article  CAS  Google Scholar 

  100. Pardo A, Hogenauer TJ, Cai Z, Vellucci JA, Castillo EM, Dirk CW, Franz AH, Michael K. ChemBioChem, 2015, 16: 1884–1889

    Article  CAS  Google Scholar 

  101. Muir TW, Sondhi D, Cole PA. Proc Natl Acad Sci USA, 1998, 95: 6705–6710

    Article  CAS  Google Scholar 

  102. Okamoto R, Morooka K, Kajihara Y. Angew Chem Int Ed, 2012, 51: 191–196

    Article  CAS  Google Scholar 

  103. Okamoto R, Isoe M, Izumi M, Kajihara Y. J Pept Sci, 2016, 22: 343–351

    Article  CAS  Google Scholar 

  104. Okamoto R, Kimura M, Ishimizu T, Izumi M, Kajihara Y. Chem Eur J, 2014, 20: 10425–10430

    Article  CAS  Google Scholar 

  105. Kenner GW, McDermott JR, Sheppard RC. J Chem Soc D, 1971, 636

    Google Scholar 

  106. Elashal HE, Sim YE, Raj M. Chem Sci, 2016, doi: 10.1039/C6SC02162J

    Google Scholar 

  107. van Berkel SS, van Eldijk MB, van Hest JCM. Angew Chem Int Ed, 2011, 50: 8806–8827

    Article  CAS  Google Scholar 

  108. Lee CL, Li X. Curr Opin Chem Biol, 2014, 22: 108–114

    Article  CAS  Google Scholar 

  109. Rohrbacher F, Wucherpfennig TG, Bode JW. Protein ligation and total synthesis II. In: Liu L, Ed. Chemical Protein Synthesis with the KAHA Ligation. Switzerland: Springer International Publishing, 2015. 1–31

    Google Scholar 

  110. Harmand TJ, Murar CE, Bode JW. Nat Protoc, 2016, 11: 1130–1147

    Article  CAS  Google Scholar 

  111. Thuaud F, Rohrbacher F, Zwicky A, Bode JW. Helv Chim Acta, 2016, 99: 868–894

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Peking University Health Science Center (BMU20130354), State Key Laboratory of Natural and Biomimetic Drugs, the National Recruitment Program of Global Youth Experts (1000 Plan), and the National Natural Science Foundation of China (21502005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwei Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Dong, S. Recent advances in the preparation of Fmoc-SPPS-based peptide thioester and its surrogates for NCL-type reactions. Sci. China Chem. 60, 201–213 (2017). https://doi.org/10.1007/s11426-016-0381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0381-1

Keywords

Navigation