Skip to main content
Log in

Strain induced polymorphism and band structure modulation in low-temperature 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene single crystal

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic semiconductors are inherently soft, making it possible to increase their mobilities by strains. Such a unique feature can be exploited directly in flexible electronics for improved device performance. The 2,7-dioctyl[1]benzothieno[3,2-b][1]-benzothiophene derivative, C8-BTBT is one of the best small-molecule hole transport materials. Here, we demonstrated its band structure modulation under strains by combining the non-equilibrium molecular dynamics simulations and first-principles calculations. We found that the C8-BTBT lattice undergoes a transition from monoclinic to triclinic crystal system at the temperature below 160 K. Both shear and uniaxial strains were applied to the low-temperature triclinic phase of C8-BTBT, and polymorphism was identified in the shear process. The band width enhancement is up to 8% under 2% of compressive strain along the x direction, and 14% under 4% of tensile strain along the y direction. The band structure modulation of C8-BTBT can be well related to its herringbone packing motifs, where the edge to face and edge to edge pairs constitute two-dimensional charge transport pathways and their electronic overlaps determine the band widths along the two directions respectively. These findings pave the way for utilizing strains towards improved performance of organic semiconductors on flexible substrates, for example, by bending the substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers JA, Bao Z. J Polym Sci A Polym Chem, 2002, 40: 3327–3334

    Article  CAS  Google Scholar 

  2. Gelinck GH, Huitema HEA, van Veenendaal E, Cantatore E, Schrijnemakers L, van der Putten JBPH, Geuns TCT, Beenhakkers M, Giesbers JB, Huisman BH, Meijer EJ, Benito EM, Touwslager FJ, Marsman AW, van Rens BJE, de Leeuw DM. Nat Mater, 2004, 3: 106–110

    Article  CAS  Google Scholar 

  3. Subramanian V, Frechet JMJ, Chang PC, Huang DC, Lee JB, Molesa SE, Murphy AR, Redinger DR, Volkman SK. Proc IEEE, 2005, 93: 1330–1338

    Article  CAS  Google Scholar 

  4. Baude PF, Ender DA, Haase MA, Kelley TW, Muyres DV, Theiss SD. Appl Phys Lett, 2003, 82: 3964–3966

    Article  CAS  Google Scholar 

  5. Klauk H, Zschieschang U, Pflaum J, Halik M. Nature, 2007, 445: 745–748

    Article  CAS  Google Scholar 

  6. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP. Science, 2000, 290: 2123–2126

    Article  CAS  Google Scholar 

  7. Crone B, Dodabalapur A, Lin YY, Filas RW, Bao Z, La Duca A, Sarpeshkar R, Katz HE, Li W. Nature, 2000, 403: 521–523

    Article  CAS  Google Scholar 

  8. Someya T, Dodabalapur A, Huang J, See KC, Katz HE. Adv Mater, 2010, 22: 3799–3811

    Article  CAS  Google Scholar 

  9. Lipomi DJ, Vosgueritchian M, Tee BCK, Hellstrom SL, Lee JA, Fox CH, Bao Z. Nat Nanotech, 2011, 6: 788–792

    Article  CAS  Google Scholar 

  10. Mannsfeld SCB, Tee BCK, Stoltenberg RM, Chen CVHH, Barman S, Muir BVO, Sokolov AN, Reese C, Bao Z. Nat Mater, 2010, 9: 859–864

    Article  CAS  Google Scholar 

  11. Kuribara K, Wang H, Uchiyama N, Fukuda K, Yokota T, Zschieschang U, Jaye C, Fischer D, Klauk H, Yamamoto T, Takimiya K, Ikeda M, Kuwabara H, Sekitani T, Loo YL, Someya T. Nat Commun, 2012, 3: 723

    Article  Google Scholar 

  12. Roberts ME, Mannsfeld SCB, Queralto N, Reese C, Locklin J, Knoll W, Bao Z. Proc Natl Acad Scis, 2008, 105: 12134–12139

    Article  CAS  Google Scholar 

  13. Berggren M, Richter-Dahlfors A. Adv Mater, 2007, 19: 3201–3213

    Article  CAS  Google Scholar 

  14. Meijer EJ, de Leeuw DM, Setayesh S, van Veenendaal E, Huisman BH, Blom PWM, Hummelen JC, Scherf U, Klapwijk TM. Nat Mater, 2003, 2: 678–682

    Article  CAS  Google Scholar 

  15. Sirringhaus H. Adv Mater, 2005, 17: 2411–2425

    Article  CAS  Google Scholar 

  16. Allard S, Forster M, Souharce B, Thiem H, Scherf U. Angew Chem Int Ed, 2008, 47: 4070–4098

    Article  CAS  Google Scholar 

  17. Anthony JE. Angew Chem Int Ed, 2008, 47: 452–483

    Article  CAS  Google Scholar 

  18. Kwak D, Lim JA, Kang B, Lee WH, Cho K. Adv Funct Mater, 2013, 23: 5224–5231

    Article  CAS  Google Scholar 

  19. Sokolov AN, Cao Y, Johnson OB, Bao Z. Adv Funct Mater, 2012, 22: 175–183

    Article  CAS  Google Scholar 

  20. Fu YT, Yi YP, Coropceanu V, Risko C, Aziz SG, Brédas JL. Sci China Chem, 2014, 57: 1330–1339

    Article  CAS  Google Scholar 

  21. He Z, Chen J, Sun Z, Szulczewski G, Li D. Organic Electrons, 2012, 13: 1819–1826

    Article  CAS  Google Scholar 

  22. Chen J, Tee CK, Shtein M, Anthony J, Martin DC. J Appl Phys, 2008, 103: 114513–114513

    Article  Google Scholar 

  23. Kushida T, Nagase T, Naito H. Organic Electrons, 2011, 12: 2140–2143

    Article  CAS  Google Scholar 

  24. Chae GJ, Jeong SH, Baek JH, Walker B, Song CK, Seo JH. J Mater Chem C, 2013, 1: 4216–4221

    Article  CAS  Google Scholar 

  25. Hwang DK, Fuentes-Hernandez C, Berrigan JD, Fang Y, Kim J, Potscavage WJ, Cheun H, Sandhage KH, Kippelen B. J Mater Chem, 2012, 22: 5531–5537

    Article  CAS  Google Scholar 

  26. Lee WY, Oh JH, Suraru SL, Chen WC, Würthner F, Bao Z. Adv Funct Mater, 2011, 21: 4173–4181

    Article  CAS  Google Scholar 

  27. Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH, Lee SY, Becerril HA, Aspuru-Guzik A, Toney MF, Bao Z. Nature, 2011, 480: 504–508

    Article  CAS  Google Scholar 

  28. Diao Y, Tee BCK, Giri G, Xu J, Kim DH, Becerril HA, Stoltenberg RM, Lee TH, Xue G, Mannsfeld SCB, Bao Z. Nat Mater, 2013, 12: 665–671

    Article  CAS  Google Scholar 

  29. Diao Y, Zhou Y, Kurosawa T, Shaw L, Wang C, Park S, Guo Y, Reinspach JA, Gu K, Gu X, Tee BCK, Pang C, Yan H, Zhao D, Toney MF, Mannsfeld SCB, Bao Z. Nat Commun, 2015, 6: 7955

    Article  CAS  Google Scholar 

  30. Becerril HA, Roberts ME, Liu Z, Locklin J, Bao Z. Adv Mater, 2008, 20: 2588–2594

    Article  CAS  Google Scholar 

  31. Yuan Y, Giri G, Ayzner AL, Zoombelt AP, Mannsfeld SCB, Chen J, Nordlund D, Toney MF, Huang J, Bao Z. Nat Commun, 2014, 5: 3005

    Google Scholar 

  32. Takimiya K, Osaka I, Mori T, Nakano M. Acc Chem Res, 2014, 47: 1493–1502

    Article  CAS  Google Scholar 

  33. Zheng X, Geng H, Yi Y, Li Q, Jiang Y, Wang D, Shuai Z. Adv Funct Mater, 2014, 24: 5531–5540

    Article  CAS  Google Scholar 

  34. Takimiya K, Kunugi Y, Konda Y, Ebata H, Toyoshima Y, Otsubo T. J Am Chem Soc, 2006, 128: 3044–3050

    Article  CAS  Google Scholar 

  35. Shi W, Chen J, Xi J, Wang D, Shuai Z. Chem Mater, 2014, 26: 2669–2677

    Article  CAS  Google Scholar 

  36. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. J Comput Chem, 2004, 25: 1157–1174

    Article  CAS  Google Scholar 

  37. Wang D, Tang L, Long M, Shuai Z. J Phys Chem C, 2011, 115: 5940–5946

    Article  CAS  Google Scholar 

  38. Gaussian 09, Revision E.01, Frisch, M. J; Trucks, G. W; Schlegel, H. B; Scuseria, G. E; Robb, M. A; Cheeseman, J. R; Scalmani, G; Barone, V; Mennucci, B; Petersson, G. A; Nakatsuji, H; Caricato, M; Li, X; Hratchian, H. P; Izmaylov, A. F; Bloino, J; Zheng, G; Sonnenberg, J. L; Hada, M; Ehara, M; Toyota, K; Fukuda, R; Hasegawa, J; Ishida, M; Nakajima, T; Honda, Y; Kitao, O; Nakai, H; Vreven, T; Montgomery, J. A., Jr; Peralta, J. E; Ogliaro, F; Bearpark, M; Heyd, J. J; Brothers, E; Kudin, K. N; Staroverov, V. N; Kobayashi, R; Normand, J; Raghavachari, K; Rendell, A; Burant, J. C; Iyengar, S. S; Tomasi, J; Cossi, M; Rega, N; Millam, J. M; Klene, M; Knox, J. E; Cross, J. B; Bakken, V; Adamo, C; Jaramillo, J; Gomperts, R; Stratmann, R. E; Yazyev, O; Austin, A. J; Cammi, R; Pomelli, C; Ochterski, J. W; Martin, R. L; Morokuma, K; Zakrzewski, V. G; Voth, G. A; Salvador, P; Dannenberg, J. J; Dapprich, S; Daniels, A. D; Farkas, Ö; Foresman, J. B; Ortiz, J. V; Cioslowski, J; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009

  39. Bayly CI, Cieplak P, Cornell W, Kollman PA. J Phys Chem, 1993, 97: 10269–10280

    Article  CAS  Google Scholar 

  40. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. J Am Chem Soc, 1995, 117: 5179–5197

    Article  CAS  Google Scholar 

  41. Plimpton S. J Comp Phys, 1995, 117: 1–19

    Article  CAS  Google Scholar 

  42. Nose S. J Chem Phys, 1984, 81: 511–519

    Article  CAS  Google Scholar 

  43. Hoover WG. Phys Rev A, 1985, 31: 1695–1697

    Article  CAS  Google Scholar 

  44. Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  45. Grimme S. J Comput Chem, 2006, 27: 1787–1799

    Article  CAS  Google Scholar 

  46. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  47. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Phys Rev B, 1992, 46: 6671–6687

    Article  CAS  Google Scholar 

  48. Nan G, Li Z. Phys Chem Chem Phys, 2012, 14: 9451–9459

    Article  CAS  Google Scholar 

  49. Diao Y, Lenn KM, Lee WY, Blood-Forsythe MA, Xu J, Mao Y, Kim Y, Reinspach JA, Park S, Aspuru-Guzik A, Xue G, Clancy P, Bao Z, Mannsfeld SCB. J Am Chem Soc, 2014, 136: 17046–17057

    Article  CAS  Google Scholar 

  50. Wang LJ, Li QK, Shuai Z. J Chem Phys, 2008, 128: 194706–194706

    Article  CAS  Google Scholar 

  51. Kubo T, Häusermann R, Tsurumi J, Soeda J, Okada Y, Yamashita Y, Akamatsu N, Shishido A, Mitsui C, Okamoto T, Yanagisawa S, Matsui H, Takeya J. Nat Commun, 2016, 7: 11156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (21273124, 21290190, 21290191 and 91333202), the Innovative Research Groups of the National Science Foundation of China (21421064) and the National Basic Research Program of China (2013CB933503 and 2015CB655002). Computational resources are provided by the Tsinghua Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Wang or Zhigang Shuai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Shi, W., Jiang, Y. et al. Strain induced polymorphism and band structure modulation in low-temperature 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene single crystal. Sci. China Chem. 60, 275–283 (2017). https://doi.org/10.1007/s11426-016-0240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0240-y

Keywords

Navigation