Skip to main content
Log in

Thermal-induced reversible ferroelastic phase transition in a new bromethyl-substituted molecular rotor

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A new bromethyl-substituted molecular rotor, [Cu(dabcoCH2Br)(H2O)Br3] (dabcoCH2Br+=1-(2-bromethyl)-1,4-diazoniabicyclo[2.2.2]octane cation), which belongs to a family of halomethyl-substituted molecular rotors, was synthesized and structurally characterized. The reversible phase transition at ca. 250 K was well established for this molecular rotor by thermal analyses, variable-temperature X-ray diffraction, and variable temperature dielectric measurements. The order-disorder transformation of the rotator part (dabco moiety) causes ferroelastic phase transition with an Aizu notation of mmmF2/m from high-temperature orthorhombic phase (Pbnm) to low-temperature monoclinic phase (P21/n). More important, in reference to the density functional theory calculations and structural analyses, the key factors to tune the phase transition behaviors are discussed in detail for this family of halomethyl-substituted molecular rotors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salje EK. Ferroelastic materials. Annu Rev Mater Res, 2012, 42: 265–283

    Article  CAS  Google Scholar 

  2. Lunkenheimer P, Muller J, Krohns S, Schrettle F, Loidl A, Hartmann B, Rommel R, de Souza M, Hotta C, Schlueter JA, Lang M. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism. Nat Mater, 2012, 11: 755–758

    Article  CAS  Google Scholar 

  3. Salje EK. Phase transitions in ferroelastic and co-elastic crystals. Ferroelectrics, 1990, 104: 111–120

    Article  CAS  Google Scholar 

  4. Hang T, Zhang W, Ye HY, Xiong RG. Metal-organic complex ferroelectrics. Chem Soc Rev, 2011, 40: 3577–3598

    Article  CAS  Google Scholar 

  5. Baek SH, Jang HW, Folkman CM, Li YL, Winchester B, Zhang JX, He Q, Chu YH, Nelson CT, Rzchowski MS, Pan XQ, Ramesh R, Chen LQ, Eom CB. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat Mater, 2010, 9: 309–314

    Article  CAS  Google Scholar 

  6. Sun ZH, Luo JH, Chen TL, Li LN, Xiong RG, Tong ML, Hong MC. Distinct molecular motions in a switchable chromophore dielectric 4-N,N-dimethylamino-4′-N′-methylstilbazolium trifluoromethanesulfonate. Adv Funct Mater, 2012, 22: 4855–4861

    Article  CAS  Google Scholar 

  7. Ye HY, Cai HL, Ge JZ, Xiong RG. Isosymmetric temperature-triggered structural phase transition of dabcodiium chlorochromate chloride. Inorg Chem Commun, 2012, 17: 159–162

    Article  CAS  Google Scholar 

  8. Sun ZH, Wang XQ, Luo JH, Zhang SQ, Yuan DQ, Hong MC. Ferroelastic phase transition and switchable dielectric behavior associated with ordering of molecular motion in a perovskite-like architectured supramolecular cocrystal. J Mater Chem C, 2013, 1: 2561–2567

    Article  CAS  Google Scholar 

  9. Braga D, Maini L. Solid-state versus solution preparation of two crystal forms of [HN(CH2CH2)3NH][OOC(CH2)COOH]2. Polymorphs or hydrogen bond isomers? Chem Commun, 2004, 8: 976–977

    Article  Google Scholar 

  10. Zhang W, Ye HY, Cai HL, Ge JZ, Xiong RG, Huang SD. Discovery of new ferroelectrics: [H2dbco]2·[Cl3]·[CuCl3(H2O)2]·H2O (dbco= 1,4-diaza-bicyclo[2.2.2]octane). J Am Chem Soc, 2010, 132: 7300–7302

    Article  CAS  Google Scholar 

  11. Zhang Y, Zhang W, Li SH, Ye Q, Cai HL, Deng F, Xiong RG, Huang SD. Ferroelectricity induced by ordering of twisting motion in a molecular rotor. J Am Chem Soc, 2012, 134: 11044–11049

    Article  CAS  Google Scholar 

  12. Zhang QC, Wu FT, Hao HM, Xu H, Zhao HX, Long LS, Huang RB, Zheng LS. Modulating the rotation of a molecular rotor through hydrogen-bonding interactions between the rotator and stator. Angew Chem Int Ed, 2013, 52: 12602–12605

    Article  CAS  Google Scholar 

  13. Lemouchi C, Yamamoto H, Kato R, Simonov S, Zorina L, Rodriguez Fortea A, Canadell E, Wzietek P, Iliopoulos K, Gindre D. Reversible control of crystalline rotors by squeezing their hydrogen bond cloud across a halogen bond-mediated phase transition. Cryst Growth Des, 2014, 14: 3375–3383

    Article  CAS  Google Scholar 

  14. Liao WQ, Zhou QQ, Zhang Y, Jin L. Synthesis, structures and dielectric properties of two five-coordinate copper (II) complexes based on N-chloromethyl-1,4-diazabicyclo [2.2.2] octane. Inorg Chem Commun, 2013, 33: 161–164

    Article  CAS  Google Scholar 

  15. Chen LZ, Huang DD, Ge JZ, Pan QJ. Reversible ferroelastic phase transition of N-chloromethyl-1,4-diazabicyclo[2.2.2]octonium trichlorobromoaquo copper(II). Inorg Chem Commun, 2014, 45: 5–9

    Article  CAS  Google Scholar 

  16. Chen LZ, Huang DD, Ge JZ, Pan QJ. Temperature-induced reversible structural phase transition of N-chloromethyl-1,4-diazabicyclo-[2.2.2]octonium trichloroaquo-manganese(II). J Mol Struct, 2014: 307–312

    Google Scholar 

  17. Finke AD, Gray DL, Moore JS. 1-Bromomethyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide. Acta Cryst, 2010, 66: O377

    CAS  Google Scholar 

  18. Sheldrick GM. SADABS, Bruker nonius area detector scaling and absorption correction. Version 2.05. 1999

    Google Scholar 

  19. Higashi T. ABSCOR—an empirical absorption correction based on fourier coefficient fitting. 1995

    Google Scholar 

  20. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr, 2009, 42: 339–341

    Article  CAS  Google Scholar 

  21. Sheldrick GM. SHELXL-97. Program for X-ray crystal structure refinement. Gottingen: University of Gottingen, 1997

    Google Scholar 

  22. Sheldrick GM. SHELXS-97. Program for X-ray crystal structure solution. Gottingen: University of Gottingen, 1997

    Google Scholar 

  23. Spek AL. Structure validation in chemical crystallography. Acta Crystallogr D, 2009, 65: 148–155

    Article  CAS  Google Scholar 

  24. Accelrys. Materials studio release notes, release 5.0. 2010

    Google Scholar 

  25. For a convenient structural comparison of the two phases for 4, the nonstandard setting Pbnm and P21/n were chosen for and , respectively.

  26. Bui TTT, Dahaoui S, Lecomte C, Desiraju GR, Espinosa E. The nature of halogen⋯halogen interactions: a model derived from experimental charge-density analysis. Angew Chem Int Ed, 2009, 48: 3838–3841

    Article  CAS  Google Scholar 

  27. Awwadi FF, Willett RD, Peterson KA, Twamley B. The nature of halogen⋯halogen synthons: crystallographic and theoretical studies. Chem Eur J, 2006, 12: 8952–8960

    Article  CAS  Google Scholar 

  28. Aizu K. Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystals. J Phys Soc Jpn, 1969, 27: 387–396

    Article  CAS  Google Scholar 

  29. Bussmann-Holder A. The polarizability model for ferroelectricity in perovskite oxides. J Phys: Condens Matter, 2012, 24: 273202

    Google Scholar 

  30. O’Brien ZJ, Natarajan A, Khan S, Garcia-Garibay MA. Synthesis and solid-state rotational dynamics of molecular gyroscopes with a robust and low density structure built with a phenylene rotator and a tri(meta-terphenyl)methyl stator. Cryst Growth Des, 2011, 11: 2654–2659

    Article  Google Scholar 

  31. Arcos-Ramos R, Rodríguez-Molina B, Romero M, Méndez-Stivalet JM, Ochoa ME, Ramírez-Montes PI, Santillan R, Garcia-Garibay MA, Farfán N. Synthesis and evaluation of molecular rotors with large and bulky tert-butyldiphenylsilyloxy-substituted trityl stators. J Org Chem, 2012, 77: 6887–6894

    Article  CAS  Google Scholar 

  32. Lee CH, Orloff ND, Birol T, Zhu Y, Goian V, Rocas E, Haislmaier R, Vlahos E, Mundy JA, Kourkoutis LF. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature, 2013, 502: 532–536

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Xiong Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, BY., He, CT., Huang, B. et al. Thermal-induced reversible ferroelastic phase transition in a new bromethyl-substituted molecular rotor. Sci. China Chem. 58, 1137–1143 (2015). https://doi.org/10.1007/s11426-015-5325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5325-x

Keywords

Navigation