Skip to main content
Log in

Multi-walled carbon nanotubes as novel promoter of catalysts for certain hydrogenation and dehydrogenation reactions

  • Feature Articles
  • Special Issue In Honor of the 100th Birthday of Prof. Khi-Rui Tsai
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

From the chemical catalysis viewpoint, the excellent performance of CNTs in adsorption-activation of H2 and in promoting spillover of adsorbed H-species is very attractive, in addition to their nanosize channels, sp2-C constructed surfaces, and high thermal/electrical conductivity. This review examines some recent progresses of CNTs as a novel support or promoter of catalysts for certain hydrogenation or dehydrogenation reactions, e.g., hydrogenation-conversion of syngas to yield alcohols and decomposition or steam-reforming of methanol to generate H2, mainly based on recent work carried out in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58

    Article  CAS  Google Scholar 

  2. Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Appl Catal A: Gen, 2003, 253: 337–358

    Article  CAS  Google Scholar 

  3. Zhang HB, Lin GD, Yuan YZ. Multiwalled carbon nanotubes as novel support or promoter of catalysts. Curr Top Catal, 2005, 4: 1–21

    CAS  Google Scholar 

  4. Zhang HB, Liang XL, Dong X, Li HY, Lin GD. Multi-walled carbon nanotubes as a novel promoter of catalysts for CO/CO2 hydrogenation to alcohols. Catal Surv Asia, 2009, 13: 41–58

    Article  CAS  Google Scholar 

  5. Planeix JM, Coustel N, Coq B, Brotons V, Kumbhar PS, Dutartre R, Geneste P, Bernier P, Ajiayan PM. Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc, 1994, 116: 7935–7936

    Article  CAS  Google Scholar 

  6. Hoogenraad MS, Onwezen MF, van Dillen AJ, Geus JW. Supported catalysts based on carbon fibrils. Stud Surf Sci Catal, 1996, 101: 1331–1339

    Article  CAS  Google Scholar 

  7. Zhang Y, Zhang HB, Lin GD, Chen P, Yuan YZ, Tsai KR. Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst. Appl Catal A: Gen, 1999, 187: 213–224

    Article  CAS  Google Scholar 

  8. Luo JZ, Gao LZ, Leung YL, Au CT. The decomposition of NO on CNTs and 1 wt%Rh/CNTs. Catal Lett, 2000, 66: 91–97

    Article  CAS  Google Scholar 

  9. Cai Y, Lin JD, Chen HB, Zhang HB, Lin GD, Liao DW. Novel Ru-K/carbon nanotubes catalyst for ammonia synthesis. Chinese Chem Lett, 2000, 11: 373–374

    CAS  Google Scholar 

  10. van Steen E, Prinsloo FF. Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts. Catal Today, 2002, 71: 327–334.

    Article  Google Scholar 

  11. Zhang HB, Dong X, Lin GD, Yuan YZ, Zhang P, Tsai KR. Methanol synthesis from H2/CO/CO2 over CNT-promoted Cu-ZnO-Al2O3 catalyst. In: Liu CJ, Mallinson RG, Aresta M, Eds. Utilization of Greenhouse Gases, ACS Symp Ser 852. Washington DC: American Chemical Society, 2003. 195–209

    Google Scholar 

  12. Zhang HB, Dong X, Lin GD, Liang XL, Li HY. Carbon nanotube-promoted Co-Cu catalyst for highly efficient synthesis of higher alcohols from syngas. Chem Commun, 2005: 5094–5096

    Google Scholar 

  13. Ma XM, Lin GD, Zhang HB. Co-decorated carbon nanotube-supported Co-Mo-K sulfide catalyst for higher alcohol synthesis. Catal Lett, 2006, 111: 141–151

    Article  CAS  Google Scholar 

  14. Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X. Enhance ethanol production inside carbon nanotube reactors containing catalytic particles. Nat Mater, 2007, 6: 507–511

    Article  CAS  Google Scholar 

  15. Wu XM, Guo YY, Zhou JM, Lin GD, Dong X, Zhang HB. Co-decorated carbon nanotubes as a promoter of Co-Mo-K oxide catalyst for synthesis of higher alcohols from syngas. Appl Catal A: Gen, 2008, 340: 87–97

    Article  CAS  Google Scholar 

  16. Liu Z, Xu Z, Yuan Z, Lu D, Chen W, Zhou W. Cyclohexanol dehydrogenation over Co/carbon nanotube catalysts and the effect of promoter K on performance. Catal Lett, 2001, 72: 203–206

    Article  CAS  Google Scholar 

  17. Chianelli RR, Lyons JE, Mills GA. Catalysts for liquid transportation fuels from petroleum, coal, residual oil, and biomass. Catal Today, 1994, 22: 361–396

    Article  CAS  Google Scholar 

  18. Tatsumi T, Muramatsu A, Fukunaga T, Tominaga H. Nickel-promoted molybdenum catalysts for synthesis of mixed alcohols. In: Proceeding of 9th International Congress on Catalysis. Calgary, Canada, 1988. 618–625

    Google Scholar 

  19. Murchison CB, Conway MM, Stevens RR, Quarderer GJ. Mixed alcohols from syngas over moly catalysts. In: Proceeding of 9th International Congress on Catalysis. 1988. 626–633

    Google Scholar 

  20. Herman RG. Classical and non-classical routes for alcohol synthesis. Stud Surf Sci Catal, 1991, 64: 266–349

    Google Scholar 

  21. Li Z, Fu Y, Bao J, Jiang M, Hu T, Liu T, Xie Y. Effect of cobalt promoter on Co-Mo-K/C catalysts used for mixed alcohol synthesis. Appl Catal A: Gen, 2001, 220: 21–30

    Article  CAS  Google Scholar 

  22. Li D, Yang C, Qi H, Zhang H, Li W, Sun Y, Zhong B. Higher alcohol synthesis over a La promoted Ni/K2CO3/MoS2 catalyst. Catal Commun, 2004, 5: 605–609

    Article  CAS  Google Scholar 

  23. Forzatti P, Tronconi E, Pasquon I. Higher alcohol synthesis. Catal Rev-Sci Eng, 1991, 33: 109–168

    Article  CAS  Google Scholar 

  24. Stiles AB, Chen F, Harrison JB, Hu X, Storm DA, Yang HX. Catalytic conversion of synthesis gas to methanol and other oxygenated products. Ind Eng Chem Res, 1991, 30: 811–821

    Article  CAS  Google Scholar 

  25. Ma CH, Li HY, Lin GD, Zhang HB. Ni-decorated CNT-promoted Ni-Mo-K catalyst for highly efficient HAS from syngas. Appl Catal B: Env, 2010, 100: 245–253

    Article  CAS  Google Scholar 

  26. Chen P, Zhang HB, Lin GD, Hong Q, Tsai KR. Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni-MgO catalyst. Carbon, 1997, 35: 1495–1501

    Article  CAS  Google Scholar 

  27. Wang JJ, Xie JR, Huang YH, Chen BH, Lin GD, Zhang HB. An efficient Ni-Mo-K sulfide catalyst doped with CNTs for conversion of syngas to ethanol and higher alcohols. Appl Catal A: Gen, 2013, 468: 44–51

    Article  CAS  Google Scholar 

  28. Pena MA, Gomez JP, Fierro JLG. New catalytic routes for syngas and hydrogen production. Appl Catal A: Gen, 1996, 144: 7–57

    Article  CAS  Google Scholar 

  29. Ai M. Dehydrogenation of methanol to methyl formate over copper-based catalysts. Appl Catal, 1984, 11: 259–270

    Article  CAS  Google Scholar 

  30. Guerrero A, Rodriguez-Ramos I, Fierro JLG. Dehydrogenation of methanol to methyl formate over supported copper catalysts. Appl Catal, 1991, 72: 119–137

    Article  Google Scholar 

  31. Chen SG, Zhou JM, Zhang HB, Lin GD, Tsai KR. Production of H2 from decomposition of CH3OH over CNT-supported/promoted Cu-Cr catalyst. J Xiamen Univ (Nat Sci Ed), 2003, 42: 133–138

    CAS  Google Scholar 

  32. Zhang HB, Yuan YZ, Dong X, Chen SG, Lin GD. Nature of promoter action by MWCNTs in Cu-based catalysts for synthesis and decomposition of methanol. In: 3rd Asia-Pacific Congr Catal. Dalian, 2003. 627

    Google Scholar 

  33. Zhang HB, Dong X, Yuan YZ, Lin GD, Dong KM, Tsai KR. MWCNTs as novel material for carrier or promoter of catalyst. In: Proc. 13th ICC. Paris, 2004. 267

    Google Scholar 

  34. Tsai AP, Yoshimura M. Highly active quasi-crystalline Al-Cu-Fe catalyst for steam reforming of methanol. Appl Catal A-Gen, 2001, 214: 237–241

    Article  CAS  Google Scholar 

  35. Liu Y, Hayakawa T, Suzuki K, Hamakawa S, Tsunoda T, Ishii T, Kumagai M. Highly active copper/ceria catalysts for steam reforming of methanol. Appl Catal A-Gen, 2002, 223: 137–145

    Article  CAS  Google Scholar 

  36. Iwasa N, Masuda S, Ogawa N, Takezawa N. Steam reforming of methanol over Pd/ZnO: effect of the formation of PdZn alloys upon the reaction. Appl Catal A: Gen, 1995, 125: 145–157

    Article  CAS  Google Scholar 

  37. Suwa Y, Ito S, Kameoka S, Tomishige K, Kunimori K. Comparative study between Zn-Pd/C and Pd/ZnO catalysts for steam reforming of methanol. Appl Catal A-Gen, 2004, 267: 9–16

    Article  CAS  Google Scholar 

  38. Karim A, Conant T, Datye A. The role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol. J Catal, 2006, 243: 420–427

    Article  CAS  Google Scholar 

  39. Chin YH, Dagle R, Hu J, Dohnalkova AC, Wang Y. Steam reforming of methanol over highly active Pd/ZnO catalyst. Catal Today, 2002, 77: 79–88

    Article  CAS  Google Scholar 

  40. Lorenz H, Penner S, Jochum W, Rameshan C, Klötzer B. Pd/Ga2O3 methanol steam reforming catalysts: part II. Catalytic selectivity. Appl Catal A: Gen, 2009, 358: 203–210

    Article  CAS  Google Scholar 

  41. Yang L, Lin GD, Zhang HB. Highly efficient Pd-ZnO catalyst doubly promoted by CNTs and Sc2O3 for methanol steam reforming. Appl Catal A: Gen, 2013, 455: 137–144

    Article  CAS  Google Scholar 

  42. Chen P, Zhang HB, Lin GD, Tsai KR. Studies on structure and property of carbon nanotubes formed catalytically from decomposition of CH4 or CO. Chem J Chinese Univ, 1998, 19: 765–769

    CAS  Google Scholar 

  43. Zhang HB, Lin GD, Zhou ZH, Dong X, Chen T. Raman spectra of MWCNTs and MWCNTs-based H2-adsorbing systems. Carbon, 2002, 40: 2429–2436

    Article  CAS  Google Scholar 

  44. Zhang HB, Zhang Y, Lin GD, Yuan YZ, Tsai KR. Carbon nanotubes-supported Rh-phosphine complex catalysts for propene hydroformylation. Stud Surf Sci Catal, 2000, 130: 3885–3890

    Article  Google Scholar 

  45. XRD data bank attached to X’Pert PRO X-ray diffractometer. PA Nalytical, the Netherlands, 2003

  46. Moulder JF, Stickle WF, Sobol PE, Bomben KD. Handbook of X-ray photoelectron spectroscopy. Eden Prairie, MN: Perkin Elmer, 1995

    Google Scholar 

  47. Venezia AM. X-ray photoelectron spectroscopy (XPS) for catalysts characterization. Catal Today, 2003, 77: 359–370

    Article  CAS  Google Scholar 

  48. Muramatsu A, Tatsumi T, Tominaga H. Active species of molybdenum for alcohol synthesis from carbon monoxide-hydrogen. J Phys Chem, 1992, 96: 1334–1340

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, G., Liang, X., Liu, Z. et al. Multi-walled carbon nanotubes as novel promoter of catalysts for certain hydrogenation and dehydrogenation reactions. Sci. China Chem. 58, 47–59 (2015). https://doi.org/10.1007/s11426-014-5267-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5267-8

Keywords

Navigation