Skip to main content
Log in

Effect of cations in ionic liquids on the electrochemical performance of lithium-sulfur batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) battery is a promising choice for the next generation of high-energy rechargeable batteries, but its application is impeded by the high dissolution of the polysulfides in commonly used organic electrolyte. Room temperature ionic liquids (RTILs) have been considered as appealing candidates for the electrolytes in Li-S batteries. We investigated the effect of cations in RTILs on the electrochemical performance for Li-S batteries. Ex situ investigation of lithium anode for Li-S batteries indicates that during the discharge/charge process the RTIL with N-methyl-N-propylpyrrolidine cations (P13) can effectively suppress the dissolution of the polysulfides, whereas the RTIL with 1-methyl-3-propyl imidazolium cation (PMIM) barely alleviates the shuttling problem. With 0.5 mol L−1 LiTFSI/P13TFSI as the electrolyte of Li-S battery, the ketjen black/sulfur cathode material exhibits high capacity and remarkable cycling stability, which promise the application of the P13-based RTILs in Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand M, Tarascon JM. Building better batteries. Nature, 2008, 451: 652–657

    Article  CAS  Google Scholar 

  2. Gao XP, Yang HX. Multi-electron reaction materials for high energy density batteries. Energe Environ Sci, 2010, 3: 174–189

    Article  CAS  Google Scholar 

  3. Guo YG, Hu JS, Wan LJ. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater, 2008, 20: 2878–2887

    Article  CAS  Google Scholar 

  4. Li H, Wang ZX, Chen LQ, Huang XJ. Research on advanced materials for Li-ion batteries. Adv Mater, 2009, 21: 4593–4607

    Article  Google Scholar 

  5. Luo JY, Cui WJ, He P, Xia YY. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem, 2010, 2: 760–765

    Article  Google Scholar 

  6. Wei GZ, Lu X, Ke FS, Huang L, Li JT, Wang ZX, Zhou ZY, Sun SG. Crystal habit-tuned nanoplate material of Li[Li1/3−2x/3NixMn2/3−x/3]O2 for high-rate performance lithium-ion batteries. Adv Mater, 2010, 22: 4364–4367

    Article  CAS  Google Scholar 

  7. Yin YX, Xin S, Wan LJ, Li CJ, Guo YG. SnO2 hollow spheres: polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage. Sci China Chem, 2012, 55: 1314–1318

    Article  CAS  Google Scholar 

  8. Zhang H, Cao GP, Wang ZY, Yang YS, Shi ZJ, Gu ZN. Carbon nanotube array anodes for high-rate Li-ion batteries. Electrochim Acta, 2010, 55: 2873–2877

    Article  CAS  Google Scholar 

  9. Zhang T, Fu LJ, Gao J, Yang LC, Wu YP, Wu HQ. Core-shell Si/C nanocomposite as anode material for lithium ion batteries. Pure Appl Chem, 2006, 78: 1889–1896

    Article  CAS  Google Scholar 

  10. Cao AM, Hu JS, Wan LJ. Morphology control and shape evolution in 3D hierarchical superstructures. Sci China Chem, 2012, 55: 2249–2256

    Article  CAS  Google Scholar 

  11. Cui GL, Gu L, Zhi LJ, Kaskhedikar N, van Aken PA, Müllen K, Maier J. A germanium-carbon nanocomposite material for lithium batteries. Adv Mater, 2008, 20: 3079–3083

    Article  CAS  Google Scholar 

  12. Xin S, Guo YG, Wan LJ. Nanocarbon networks for advanced rechargeable lithium batteries. Acc Chem Res, 2012, 45: 1759–1769

    Article  CAS  Google Scholar 

  13. Zhang A, Zheng Z, Cheng F, Tao Z, Chen J. Preparation of Li4Ti5O12 submicrospheres and their application as anode materials of rechargeable lithium-ion batteries. Sci China Chem, 2011, 54: 936–940

    Article  CAS  Google Scholar 

  14. Deng X, Liu X, Yan H, Wang D, Wan L. Morphology and modulus evolution of graphite anode in lithium ion battery: an in situ AFM investigation. Sci China Chem, 2014, 57: 178–183

    Article  CAS  Google Scholar 

  15. Gao MR, Xu YF, Jiang J, Yu SH. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev, 2013, 42: 2986–3017

    Article  CAS  Google Scholar 

  16. Wang ZL, Xu D, Xu JJ, Zhang LL, Zhang XB. Graphene oxide gelderived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv Funct Mater, 2012, 22: 3699–3705

    Article  Google Scholar 

  17. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater, 2012, 11: 19–29

    Article  CAS  Google Scholar 

  18. Xin S, Guo YG, Wan LJ. Electrode materials for lithium secondary batteries with high energy densities. Sci Sinica Chim, 2011, 41: 1–11

    Article  Google Scholar 

  19. Yin YX, Xin S, Guo YG, Wan LJ. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed, 2013, 52: 13186–13200

    Article  CAS  Google Scholar 

  20. Ji XL, Lee KT, Nazar LF. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater, 2009, 8: 500–506

    Article  CAS  Google Scholar 

  21. Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett, 2010, 10: 1486–1491

    Article  CAS  Google Scholar 

  22. Zhang SS. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources, 2013, 231: 153–162

    Article  CAS  Google Scholar 

  23. Xin S, Gu L, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wan LJ. Smaller sulfur molecules promise better lithium-sulfur batteries. J Am Chem Soc, 2012, 134: 18510–18513

    Article  CAS  Google Scholar 

  24. Xin S, Yin YX, Wan LJ, Guo YG. Encapsulation of sulfur in a hollow porous carbon substrate for superior Li-S batteries with long lifespan. Part Part Syst Char, 2013, 30: 321–325

    Article  CAS  Google Scholar 

  25. Ye H, Yin YX, Xin S, Guo YG. Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries. J Mater Chem A, 2013, 1: 6602–6608

    Article  CAS  Google Scholar 

  26. Gao J, Lowe MA, Kiya Y, Abruña HD. Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phy Chem C, 2011, 115: 25132–25137

    Article  CAS  Google Scholar 

  27. Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc, 2011, 133: 18522–18525

    Article  CAS  Google Scholar 

  28. Suo L, Hu YS, Li H, Armand M, Chen L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun, 2013, 4: 1–9

    Article  Google Scholar 

  29. Zhang SS. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochim Acta, 2012, 70: 344–348

    Article  CAS  Google Scholar 

  30. Lin Z, Liu ZC, Fu WJ, Dudney NJ, Liang CD. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv Funct Mater, 2013, 23: 1064–1069

    Article  CAS  Google Scholar 

  31. Reale P, Fernicola A, Scrosati B. Compatibility of the Py24TFSI-LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes. J Power Sources, 2009, 194: 182–189

    Article  CAS  Google Scholar 

  32. Wang J, Chew SY, Zhao ZW, Ashraf S, Wexler D, Chen J, Ng SH, Chou SL, Liu HK. Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon, 2008, 46: 229–235

    Article  CAS  Google Scholar 

  33. Wang L, Byon HR. N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide-based organic electrolyte for high performance lithium-sulfur batteries. J Power Sources, 2013, 236: 207–214

    Article  CAS  Google Scholar 

  34. Kim S, Jung YJ, Park SJ. Effects of imidazolium salts on discharge performance of rechargeable lithium-sulfur cells containing organic solvent electrolytes. J Power Sources, 2005, 152: 272–277

    Article  CAS  Google Scholar 

  35. Kim S, Jung YJ, Park SJ. Effect of imidazolium cation on cycle life characteristics of secondary lithium-sulfur cells using liquid electrolytes. Electrochim Acta, 2007, 52: 2116–2122

    Article  CAS  Google Scholar 

  36. Yuan LX, Feng JK, Ai XP, Cao YL, Chen SL, Yang HX. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem Commun, 2006, 8: 610–614

    Article  CAS  Google Scholar 

  37. Park JW, Yamauchi K, Takashima E, Tachikawa N, Ueno K, Dokko K, Watanabe M. Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium-sulfur batteries. J Phy Chem C, 2013, 117: 4431–4440

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YuGuo Guo or Li-Jun Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Yin, Y., Guo, Y. et al. Effect of cations in ionic liquids on the electrochemical performance of lithium-sulfur batteries. Sci. China Chem. 57, 1564–1569 (2014). https://doi.org/10.1007/s11426-014-5154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5154-3

Keywords

Navigation