Skip to main content
Log in

Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Cyclodextrin-modified graphene oxide nanosheets (denoted as CD/GO) were synthesized by an in-situ polymerization method and characterized by as well as Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and potentiometric acid-base titration. The characterization results indicated that CD was successfully grafted onto GO surfaces by forming a chemical bond. Mutual effects on the simultaneous removal of hexavalent uranium and humic acid by CD/GO from aqueous solution were investigated. The results indicated that U(VI) and humic acid (HA) sorption on CD/GO were greatly affected by pH and ionic strength. The presence of HA enhanced U(VI) sorption at low pH and reduced U(VI) sorption at high pH, whereas the presence of U(VI) enhanced HA sorption. The surface adsorbed HA acted as a “bridge” between U(VI) and CD/GO, and formed strong inner-sphere surface complexes with U(VI). Sorption isotherms of U(VI) or HA on CD/GO could be well fitted by the Langmuir model. This work highlights that CD/GO can be used as a promising material in the enrichment of U(VI) and HA from wastewater in U(VI) and humic substances obtained by environmental pollution cleanup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 2010, 22: 3906–3924

    Article  CAS  Google Scholar 

  2. Wang Q, Wang XK, Chai ZF, Hu WP. Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications. Chem Soc Rev, 2013, 42: 8821–8834

    Article  CAS  Google Scholar 

  3. Zhao GX, Li JX, Ren XM, Chen CL, Wang XK. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol, 2011, 45: 10454–10462

    Article  CAS  Google Scholar 

  4. Zhao GX, Jiang L, He YD, Li JX, Dong HK, Wang XK, Hu WP. Sulfonated graphene for persistent aromatic pollutant management. Adv Mater, 2011, 23: 3959–3963

    Article  CAS  Google Scholar 

  5. Zhao GX, Wen T, Yang XT, Yang SB, Wang XK. Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans, 2012, 41: 6182–6188

    Article  CAS  Google Scholar 

  6. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 2010, 39: 228–240

    Article  CAS  Google Scholar 

  7. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano, 2008, 2: 572–578

    Article  CAS  Google Scholar 

  8. Xu YX, Wu Q, Sun YQ, Bai H, Shi GQ. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano, 2010, 4: 7358–7362

    Article  CAS  Google Scholar 

  9. Xiang DS, Zhang AH, Luo M, Ji XH, He ZK. Graphene oxide and molecular beacons-based multiplexed DNA detection by synchronous fluorescence analysis. Sci China Chem, 2013, 56: 380–386

    Article  CAS  Google Scholar 

  10. Sun YB, Shao DD, Chen CL, Yang SB, Wang XK. Highly efficient enrichment of radionuclides on graphene oxide supported polyaniline. Environ Sci Technol, 2013, 47: 9904–9910

    Article  CAS  Google Scholar 

  11. Chen Y, Chen L, Bai H, Li L. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem A, 2013, 1: 1992–2001

    Article  CAS  Google Scholar 

  12. Arkas M, Allabashi R, Tsiourvas D, Mattausch EM, Perfler R. Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ Sci Technol, 2006, 40: 2771–2777

    Article  CAS  Google Scholar 

  13. Saenger W, Jacob J, Gessler K, Steiner T, Hoffmann D, Sanbe H, Takaha T. Structures of the common cyclodextrins and their larger analogues beyond the doughnut. Chem Rev, 1998, 98: 1787–1802

    Article  CAS  Google Scholar 

  14. Berto S, Bruzzoniti MC, Cavalli R, Perrachon D, Prenesti E, Sarzanini C, Tumiatti W. Synthesis of new ionic β-cyclodextrin polymers and characterization of their heavy metals retention. J Incl Phenom Macrocycl Chem, 2007, 57: 631–636

    Article  CAS  Google Scholar 

  15. Galia A, Navarre EC, Scialdone O, Ferreira M, Filardo G, Tilloy S, Monflier E. Complexation of phosphine ligands with peracetylated β-cyclodextrin in supercritical carbon dioxide: spectroscopic determination of equilibrium constants. J Phy Chem B, 2007, 111: 2573–2578

    Article  CAS  Google Scholar 

  16. Navaza A, Iroulart MG, Navaza J. A monomeric uranyl hydroxide system obtained by inclusion in the β-cyclodextrin cavity. J Coord Chem, 2000, 51: 153–168

    Article  CAS  Google Scholar 

  17. Gorman-Lewis D, Elias PE, Fein JB. Sorption of aqueous uranyl complexes onto Bacillus subtilis cells. Environ Sci Technol, 2005, 39: 4906–4912

    Article  CAS  Google Scholar 

  18. Wang XL, Yuan LY, Wang YF, Li ZJ, Lan JH, Liu YL, Feng YX, Zhao YL, Chai ZF, Shi WQ. Mesoporous silica SBA-15 functionalized with phosphonate and amino groups for uranium uptake. Sci China Chem, 2012, 55: 1705–1711

    Article  CAS  Google Scholar 

  19. Anke M, Seeber O, Müller R, Schäfer U, Zerull J. Uranium transfer in the food chain from soil to plants, animals and man. Chem Erde-Geochem, 2009, 69: 75–90

    Article  CAS  Google Scholar 

  20. Yang SB, Hu J, Chen CL, Shao DD, Wang XK. Mutual effects of Pb(II) and humic acid sorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Environ Sci Technol, 2011, 45: 3621–3627

    Article  CAS  Google Scholar 

  21. Zhang X, Bai R. Mechanisms and kinetics of humic acid sorption onto chitosan-coated granules. J Colloid Interf Sci, 2003, 264: 30–38

    Article  CAS  Google Scholar 

  22. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon, 2004, 42: 2929–2937

    CAS  Google Scholar 

  23. Li J, Zhang SW, Chen CL, Zhao GX, Yang X, Li JX, Wang XK. Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl Mater Interf, 2012, 4: 4991–5000

    Article  CAS  Google Scholar 

  24. Guo YJ, Guo SJ, Li J, Wang EK, Dong SJ. Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim. Talanta, 2011, 84: 60–64

    Article  CAS  Google Scholar 

  25. Yang ST, Zong PF, Sheng GD, Wang Q, Wang XK. Fabrication of β-cyclodextrin conjugated magnetic HNT/iron oxide composite for high-efficient decontamination of U (VI). Chem Eng J, 2012, 214: 376–385

    Article  Google Scholar 

  26. Shao DD, Sheng GD, Chen CL, Wang XK, Nagatsu M. Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere, 2010, 79: 679–685

    Article  CAS  Google Scholar 

  27. Ding DX, Liu XT, Hu N, Li GY, Wang YD. Removal and recovery of uranium from aqueous solution by tea waste. J Radioanal Nucl Chem, 2012, 293: 735–741

    Article  CAS  Google Scholar 

  28. Song MM, Wang Q, Meng YD. Removal of UO2 2+ from aqueous solution by plasma functionalized MWCNTs. J Radioanal Nucl Chem, 2012, 293: 899–906

    Article  CAS  Google Scholar 

  29. Yan WL, Bai R. Sorption of lead and humic acid on chitosan hydrogel beads. Water Res, 2005, 39: 688–698

    Article  CAS  Google Scholar 

  30. Floroiu RM, Davis AP, Torrents A. Cadmium sorption on aluminum oxide in the presence of polyacrylic acid. Environ Sci Technol, 2001, 35: 348–353

    Article  CAS  Google Scholar 

  31. Myneni SCB, Brown JT, Martinez GA, Meyer-Ilse W. Imaging of humic substance macromolecular structures in water and soils. Science, 1999, 286: 1335–1337

    Article  CAS  Google Scholar 

  32. Chen CL, Wang XK, Jiang H, Hu WP. Direct observation of macromolecular structures of humic acid by AFM and SEM. Colloid Surf A, 2007, 302: 121–125

    Article  CAS  Google Scholar 

  33. Collins CR, Ragnarsdottir KV, Sherman DM, Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite. Geochim. Cosmochim Acta, 1999, 63: 2989–3002

    Article  CAS  Google Scholar 

  34. Evans N, Warwick P, Lewis T, Bryan N. Influence of humic acid on the sorption of uranium (IV) to kaolin. Environ Chem Lett, 2011, 9: 25–30

    Article  CAS  Google Scholar 

  35. Ren XM, Yang ST, Tan XL, Chen CL, Sheng GD, Wang XK. Mutual effects of copper and phosphate on their interaction with γ-Al2O3: combined batch macroscopic experiments with DFT calculations. J Hazard Mater, 2012, 237–238: 199–208

    Article  Google Scholar 

  36. Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD. Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B, 2009, 113: 860–864

    Article  CAS  Google Scholar 

  37. Aytas S, Turkozu DA, Gok C. Biosorption of uranium(VI) by bi-functionalized low cost biocomposite adsorbent. Desalination, 2011, 280: 354–362

    Article  CAS  Google Scholar 

  38. Han R, Zou W, Wang Y, Zhu L. Removal of uranium (VI) from aqueous solutions by manganese oxide coated zeolite: discussion of sorption isotherms and pH effect. J Environ Radioact, 2007, 93: 127–143

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiangKe Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Shao, D., Lu, S. et al. Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. Sci. China Chem. 57, 1291–1299 (2014). https://doi.org/10.1007/s11426-014-5119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5119-6

Keywords

Navigation