Skip to main content
Log in

Synthesis and electrochemical properties of a series of novel tetra(4-benzoyl)phenoxyphthalocyanine derivatives

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A novel phthalocyanine, 2,9(10),16(17),23(24)-tetra(4-benzoyl)phenoxyphthalocyanine, and its complexes with Zn(II), Cu(II), Co(II), and Ni(II) have been synthesized and characterized by a combination of elemental analysis, IR, 1H NMR, UV-vis spectroscopy and mass spectrometry. All of the materials are very soluble in common organic solvents such as dichloromethane, chloroform, tetrahydrofuran, N,N-dimethylformamide and dimethyl sulfoxide. The Q band wavelengths of the complexes decrease in the order: Zn > Cu > Ni > Co. Redox processes were observed at −1.06, −0.74, 0.51 and 0.98 V for the free phthalocyanine, at −0.72 and 1.04 V for the Co(II) complex, at −1.24, −0.77, −0.24, 0.61 and 0.91 V for the Cu(II) complex, and at −0.74 and 1.20 V for the Ni(II) complex. The cyclic voltammograms of the phthalocyanine ring of the four species are similar, with reduction and oxidation couples each involving a one-electron transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leznoff CC, Lever ABP. Phthalocyanines: Properties and Applications. New York: VCH, 1989

    Google Scholar 

  2. Kobayashi N, Lam H, Nevin WA, Janda P, Leznoff CC, Lever ABP. Electrochemistry and spectroelectrochemistry of l,8-naphthalene- and l,8-anthracene-linked cofacial binuclear metallophthalocyanines. New mixed-valence metallophthalocyanines. Inorg Chem, 1990, 29: 3415–3425

    Article  CAS  Google Scholar 

  3. Duro JA, Torre G, Barbera J, Serrano JL, Torres T. Synthesis and liquid-crystal behavior of metal-free and metal-containing phthalocyanines substituted with long-chain amide groups. Chem Mater, 1996, 8: 1061–1066

    Article  CAS  Google Scholar 

  4. Brink J van den, Morpurgo AF. Magnetic blue. Nature, 2007, 177–178

  5. Huang ZY, Huang JD, Chen JC, Huang JL. Metal phthalocyanines piperazine containing: Synthesis and photoinhibition on cancer cell. Chinese J Inorg Chem, 2008, 24: 55–60

    Google Scholar 

  6. Sastre A, Torres T, Diaz-Garcia MA, Agullo-Lopez F, Dhenaut C, Brasselet S, Ledoux I, Zyss J. Subphthalocyanines: Novel targets for remarkable second-order optical nonlinearities. J Am Chem Soc, 1996, 118: 2746–2747

    Article  CAS  Google Scholar 

  7. Fischer MKR, Lopez-Duarte I, Wienk MM, Martinez-Diaz MV, Janssen RAJ, Bauerle P, Torres T. Functionalized dendritic oligothiophenes: Ruthenium phthalocyanine complexes and their application in bulk heterojunction solar cells. J Am Chem Soc, 2009, 131: 8669–9676

    Article  CAS  Google Scholar 

  8. Li Y, Bian YZ, Yan M, Thapaliya PS, Johns D, Yan XZ, Galipeau D, Jiang JZ. Mixed (porphyrinato)(phthalocyaninato) rare-earth(III) double-decker complexes for broadband light harvesting organic solar cells. J Mater Chem, 2011, 21: 11131–11141

    Article  CAS  Google Scholar 

  9. Tang CW. Two-layer organic photovoltaic cell. Appl Phys Lett, 1986, 48: 183–185

    Article  CAS  Google Scholar 

  10. Xue JG, Rand BP, Uchida S, Forrest SR. A hybrid planar-miced molecular heterojunction photovoltaic cell. Adv Mater, 2005, 17: 66–71

    Article  CAS  Google Scholar 

  11. Martínez-Díaz MV, Torre G de la, Torres T. Lighting porphyrins and phthalocyanines for molecular Photovoltaics. Chem Commun, 2010, (46): 7090–7108

  12. Liang FS, Shi F, Fu YY, Wang LF, Zhang XT, Xie ZY, Su ZM. Donor-acceptor conjugates-functionalized zinc phthalocyanine: Towards broad absorption and application in organic solar cells. Sol Energ Mat Sol C, 2010, 94: 1803–1808

    Article  CAS  Google Scholar 

  13. Varotto A, Nam CY, Radivojevic I, Tomé JPC, Cavaleiro JAS, Black CT, Drain CM. Phthalocyanine blends improve bulk heterojunction solar cells. J Am Chem Soc, 2010, 132: 2552–2554

    Article  CAS  Google Scholar 

  14. Fischer MKR, López-Duarte I, Wienk MM, Martínez-Díaz MV, Janssen RAJ, Bäuerle P, Torres T. Functionalized dendritic oligothiophenes: Ruthenium phthalocyanine complexes and their applicationin bulk heterojunction solar cells. J Am Chem Soc, 2009, 131: 8669–8676

    Article  CAS  Google Scholar 

  15. Silvestri F, López-Duarte I, Seitz W, Beverina L, Martínez-Díaz MV, Marks TJ, Guldi DM, Pagani GA, Torres T. A squaraine-phthalocyanine ensemble: Towards molecular panchromatic sensitizers in solar cells. Chem Commun, 2009, (30): 4500–4502

  16. Tau P, Nyokong T. Synthesis, electrochemical and photophysical properties of phthalocyaninato oxotitanium(IV) complexes tetra-substituted at the α and β positions with arylthio groups. Dalton Trans, 2006, 37: 4482–4490

    Article  Google Scholar 

  17. Hamuryudan E, Merey S, Bayir ZA. Synthesis of phthalocyanines with tridentate branched bulky and alkythio groups. Dyes Pigments, 2003, 59: 263–268

    Article  CAS  Google Scholar 

  18. Weber JH, Busch DH. Complexes derived from strong field ligands. XIX. Magnetic properties of transition metal derivatives of 4, 4′, 4″, 4′″-tetrasulfophthalocyanine. Inorg Chem, 1965, 4: 469–471

    Article  CAS  Google Scholar 

  19. Kobayash N, Shirai H, Hojo N. Iron(II) phthalocyanines: Oxidation and spin states of iron in iron phthalocyanines with carboxyl groups. J Chem Soc Dalton Trans, 1984, 2107–2110

  20. Durmus M, Erdogmus A, Ogunsipe A, Nyokong T. The synthesis and photophysicochemical behaviour of novel water-soluble cationic indium(III) phthalocyanine. Dyes Pigments, 2009, 82: 244–250

    Article  CAS  Google Scholar 

  21. Bayar S, Dincer HA, Gonca E. The synthesis of some phthalocyanines derived from bulky substituted phthalonitriles. Dyes Pigments, 2009, 80: 156–162

    Article  CAS  Google Scholar 

  22. Ogunbayo TB, Nyokong T. Synthesis and Pd(II) binding studies of octasubstituted alkyl thio derivatised phthalocyanines. Polyhedron, 2009, 28: 2710–2718

    Article  CAS  Google Scholar 

  23. Kobayashi N. Dimers, trimers and oligomers ofphthalocyanines and related compounds. Coordin Chem Rev, 2002, 227: 129–152

    Article  CAS  Google Scholar 

  24. Brożek-Pluska B, Szymczyk I, Abramczyk H. Raman spectroscopy of phthalocyanines and their sulfonated derivatives. J Mol Struct, 2005, 744-747: 481–485

    Article  Google Scholar 

  25. Nandhikonda P, Begaye MP, Heagy MD. Highly water-soluble, OFF-ON, dual fluorescent probes for sodium and potassium ions. Tetrahedron Lett, 2009, 50: 2459–2461

    Article  CAS  Google Scholar 

  26. Nombona N, Nyokong T. The synthesis, cyclic voltammetry and spectroelectrochemical studies of Co(II) phthalocyanines tetra-substituted at the αand β positions with phenylthio groups. Dyes Pigments, 2009, 80: 130–135

    Article  CAS  Google Scholar 

  27. Snow AW, Jarvis NL. Molecular association and monolayer formation of soluble phthalocyanine compounds. J Am Chem Soc, 1984, 106: 4706–4711

    Article  CAS  Google Scholar 

  28. Dodsworth ES, Lever ABP, Seymour P, Leznoff CC. Intramolecular coupling in metal-free binuclear phthalocyanines. J Phys Chem, 1985, 89: 5698–5705

    Article  CAS  Google Scholar 

  29. Leznoff CC, Svirskaya PI, Khouw B, Cerny RL, Seymour P, Lever ABP. Syntheses of monometalated and unsymmetrically substituted binuclear phthalocyanines and a pentanuclear phthalocyanine by solution and polymer support methods. J Org Chem, 1991, 56: 82–90

    Article  CAS  Google Scholar 

  30. Agboola B, Ozoemena KI, Nyokong T. Synthesis and electrochemical characterisation of benzylmercapto and dodecylmercapto tetra substituted cobalt, iron, and zinc phthalocyanines complexes. Electrochim Acta, 2006, 51: 4379–4387

    Article  CAS  Google Scholar 

  31. Mack J, Stillman MJ. Assignment of the optical spectra of metal phthalocyanine anions. Inorg Chem, 1997, 36: 413–425

    Article  CAS  Google Scholar 

  32. Mack J, Kobayashi N, Leznoff CC, Stillman MJ. Absorption, fluorescence, and magnetic circular dichroism spectra of and molecular orbital calculations on tetrabenzotriazaporphyrins and tetranaphthotriazaporphyrins. Inorg Chem, 1997, 36: 5624–5634

    Article  CAS  Google Scholar 

  33. Durmus M, Erdogmus A, Ogunsipe A, Nyokong T. The synthesis and photophysicochemical behaviour of novel water-soluble cationic indium( III) phthalocyanine. Dyes Pigments, 2009, 82: 244–250

    Article  CAS  Google Scholar 

  34. Maclean AL, Foran GJ, Kennedy BJ, Turner P, Humbley TW. Structural characterization of nickel(II) tetraphenylporphyrin. Aust J Chem, 1996, 49: 1273–1278

    Article  CAS  Google Scholar 

  35. Snow AW, Jarvis NL. Molecular association and monolayer formation of soluble phthalocyanine compounds. J Am Chem Soc, 1984, 106: 4706–4711

    Article  CAS  Google Scholar 

  36. Xie WW, Xu HT, Gan CS. The study on the synthesis and properties of α- and β-tetra-substituted phthalocyanines. Chinese J Chem phys, 2003, 16: 491–498

    CAS  Google Scholar 

  37. Day PN, Wang ZQ, Pachter R. Calculation of the structure and ab sorption spectra of phthalocyanines in the gas-phase and in solution. J Mol Struct-Theochem, 1998, 455: 33–50

    Article  CAS  Google Scholar 

  38. Young JG, Onyebuagu W. Synthesis and characterization of di-disubstituted phthalocyanines. J Org Chem, 1990, 55: 2155–2159

    Article  CAS  Google Scholar 

  39. Cong FD, Tian DL, Gao JS, Duan WJ, Du XG, Ma CY. Synthesis, characterization and photostability of several soluble tetra( quinolin-8-yloxy) metallophthalocyanines. Inorg Chim Acta, 2009, 362: 243–246

    Article  CAS  Google Scholar 

  40. Esenpnar AA, Ozkaya AR, Bulut M. Synthesis and electrochemistry of tetrakis(7-coumarinthio-4-methyl)-phthalocyanines, and preparation of their cinnamic acid and sodium cinnamate derivatives. Polyhedron, 2009, 28: 33–42

    Article  Google Scholar 

  41. Arslan S, Yilmaz I. A new water-soluble metal-free phthalocyanine substituted with naphthoxy-4-sulfonic acid sodium salt. Synthesis, aggregation, electrochemistry and in situ spectroelectrochemistry. Polyhedron, 2007, 26: 2387–2394

    Article  CAS  Google Scholar 

  42. Özkaya AR, Gürek AG, Gül A, Bekaroğlu O. Electrochemical and spectral properties of octakis(hexylthio)-substituted phthalocyanines. Polyhedron, 1997, 16: 1877–1883

    Article  Google Scholar 

  43. Ma CY, Du GT, Cao Y, Yu SK, Cheng CH, Jiang WH, Chang YC, Wang X, Cong FD, Yu HF. Synthesis and electrochemistry of a substituted phthalocyaninatozinc. Dyes Pigments, 2007, 72: 267–270

    Article  CAS  Google Scholar 

  44. Fukuda T, Makarova EA, Luk’yanets EA and Kobayashi N. Synthesis and spectroscopic and electrochemical studies of novel benzo-or 2,3-naphtho-fused tetraazachlorins, bacteriochlorins, and isobacteriochlorins. Chem Eur J, 2004, 10: 117–133

    Article  CAS  Google Scholar 

  45. Bykloglu Z, Koca A, Kantekin H. Synthesis, electrochemical, in situ spectroelectrochemical and in situ electrocolorimetric characterization of new phthalocyanines peripherally fused to four flexible crown ether moieties. Polyhedron, 2009, 28: 2171–2178

    Article  Google Scholar 

  46. Lever ABP, Milaeva ER, Speier G. The redox chemistry of metallophthalocyanines in solution. In: Leznoff CC, Lever ABP Eds. Phthalocyanines: Properties and Applications. New York: VCH. 1993, 5–69

    Google Scholar 

  47. Lever ABP, Minor PC. Electrochemistry of main-group phthalocyanines. Inorg Chem, 1981, 20: 4015–4017

    Article  CAS  Google Scholar 

  48. Yarasir MN, Kandaz M, Koca A, Salih B. Polytopic cation receptor functional phthalocyanines: Synthesis, characterization, electrochemistry and metal ion binding. Polyhedron, 2007, 26: 1139–1147

    Article  CAS  Google Scholar 

  49. Ozer M, Altndal A, Özkaya AR, Bulut M, Bekaroglu Ö. Synthesis, characterization and some properties of novel bis(pentauorophenyl) methoxyl substituted metal free and metallophthalocyanines. Polyhedron, 2006, 25: 3593–3602

    Article  Google Scholar 

  50. Özkaya AR, Hamuryudan E, Bayir ZA, Bekaroğlu Ö. Electrochemical properties of octakis(hydroxyethylthio)-substituted phthalocyanines. J Porphyr Phthalocya, 2000, 4: 689–697

    Article  Google Scholar 

  51. Kulac D, Bulut M, Altndal A, Özkaya AR, Salih B, Bekaroğlu Ö. Synthesis and characterization of novel 4-nitro-2-(octyloxy)phenoxy substituted symmetrical and unsymmetrical Zn(II), Co(II) and Lu(III) phthalocyanines. Polyhedron, 2007, 26: 5432–5440

    Article  CAS  Google Scholar 

  52. Alemdar A, Özkaya AR, Bulut M. Synthesis, spectroscopy, electrochemistry and in situ spectroelectrochemistry of partly halogenated coumarin phthalonitrile and corresponding metal-free, cobalt and zinc phthalocyanines. Polyhedron, 2009, 28: 3788–3796

    Article  CAS  Google Scholar 

  53. Koca A, Bayar S, Dincer HA, Gonca E. Voltammetric, in situ spectroelectrochemical and in-situ electrocolorimetric characterization of phthalocyanines. Electrochim Acta, 2009, 54: 2684–2692

    Article  CAS  Google Scholar 

  54. Kandaz M, Cetin HS, Koca A, Özkaya AR. Metal ion sensing multifunctional differently octasubstituted ionophore chiral metallophthalocyanines: Synthesis, characterization, spectroscopy, and electrochemistry. Dyes Pigments, 2007, 74: 298–305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Fu, Q., Ma, J. et al. Synthesis and electrochemical properties of a series of novel tetra(4-benzoyl)phenoxyphthalocyanine derivatives. Sci. China Chem. 55, 1872–1880 (2012). https://doi.org/10.1007/s11426-012-4675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4675-x

Keywords

Navigation