Skip to main content
Log in

Assembly of layer-by-layer films of superoxide dismutase and gold nanorods: A third generation biosensor for superoxide anion

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Based on the layer-by-layer self-assembly of positively charged cetyltrimethylammonium bromide (CTAB) wrapped gold nanorods (AuNRs) and negatively charged superoxide dismutase (SOD) from their aqueous solutions on cysteine modified gold electrode (Cys/Au), a third generation electrochemical biosensor ((SOD/AuNRs)2/Cys/Au) for superoxide anion (O2 ·−) was developed. The two layers assembly of SOD/AuNRs can significantly enhance the direct electron transfer between SOD and the electrode. The functional enzymatic activities of the SOD offer an electrochemical approach to the determination of O2 ·−. In the reductive regions, the proposed sensor exhibits excellent analytical performances, such as wide linear range (200 nM to 0.2 mM O2 ·−), low detection limit (100 nM O2 ·−), high sensitivity (22.11 nA cm−2 μM−1), short response time (less than 5 s), good stability and reproducibility, while no obvious interferences are caused by commonly met interfering species including hydrogen peroxide (H2O2), uric acid (UA) and ascorbic acid (AA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kontos HA, Wei EP. Superoxide production in experimental brain injury. Pediatr Neurosurg, 1986, 64: 803–807

    CAS  Google Scholar 

  2. Braughler JM, Hall ED. Central nervous systems trauma and stroke: I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radical Bio Med, 1989, 6: 289–301

    Article  CAS  Google Scholar 

  3. Vanella A, Di Giacomo C, Sorrenti V, Russo A, Castorina C, Campisi A, Renis M, Perez-Polo J. Free radical scavenger depletion in post-ischemic reperfusion brain damage. Neurochem Res, 1993, 18: 1337–1340

    Article  CAS  Google Scholar 

  4. Benzi G, Moretti A. Age and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system. Free Radical Bio Med, 1995, 19: 77–101

    Article  CAS  Google Scholar 

  5. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol-Cell Ph, 1996, 271: 1424–1437

    Google Scholar 

  6. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest, 1993, 91: 2546–2546

    Article  CAS  Google Scholar 

  7. Tanaka K, Kobayashi F, Isogai Y, Iizuka T. Electrochemical determination of superoxide anions generated from a single neutrophil. J Electroanal Chem, 1991, 321: 413–421

    Article  Google Scholar 

  8. Chen J, Wollenberger U, Lisdat F, Ge B, Scheller F. Superoxide sensor based on hemin modified electrode. Sensor Actuat B-Chem, 2000, 70: 115–120

    Article  Google Scholar 

  9. Taniguchi I, Toyosawa K, Yamaguchi H, Yasukouchi K. Voltammetric response of horse heart cytochrome c at a gold electrode in the presence of sulfur bridged bipyridines. J Electroanal Chem, 1982, 140: 187–193

    Article  CAS  Google Scholar 

  10. Lotzbeyer T, Schuhmann W, Schmidt HL. Electron transfer principles in amperometric biosensors: Direct electron transfer between enzymes and electrode surface. Sensor Actuat B-Chem, 1996, 33: 50–54

    Article  Google Scholar 

  11. Borsari M, Azab HA. Voltammetic behaviour of bovine erythrocyte superoxide dismutase. Bioelectrochem Bioenerg, 1992, 27: 229–233

    Article  CAS  Google Scholar 

  12. Ge B, Scheller FW, Lisdat F. Electrochemistry of immobilized CuZnSOD and FeSOD and their interaction with superoxide radicals. Biosens Bioelectron, 2003, 18: 295–302

    Article  CAS  Google Scholar 

  13. Tian Y, Mao L, Okajima T, Ohsaka T. Electrochemistry and electrocatalytic activities of superoxide dismutases at gold electrodes modified with a self-assembled monolayer. Anal Chem, 2004, 76: 4162–4168

    Article  CAS  Google Scholar 

  14. Lu H, Hu N. Loading behavior of {chitosan/hyaluronic acid}n layer-by-layer assembly films toward myoglobin: An electrochemical study. J Phys Chem B, 2006, 110: 23710–23718

    Article  CAS  Google Scholar 

  15. McKenzie KJ, Marken F. Accumulation and reactivity of the redox protein cytochrome c in mesoporous films of TiO2 phytate. Langmuir, 2003, 19: 4327–4331

    Article  CAS  Google Scholar 

  16. Wang G, Liu Y, Hu N. Comparative electrochemical study of myoglobin loaded in different types of layer-by-layer assembly films. Electrochim Acta, 2007, 53: 2071–2079

    Article  CAS  Google Scholar 

  17. Guo R, Georganopoulou D, Feldberg SW, Donkers R, Murray RW. Supporting electrolyte and solvent effects on single-electron double layer capacitance charging of hexanethiolate-coated Au140 nanoparticles. Anal Chem, 2005, 77: 2662–2669

    Article  CAS  Google Scholar 

  18. Zhao X, Mai Z, Kang X, Dai Z, Zou X. Clay-chitosan-gold nanoparticle nanohybrid: Preparation and application for assembly and direct electrochemistry of myoglobin. Electrochim Acta, 2008, 53: 4732–4739

    Article  CAS  Google Scholar 

  19. Zhao X, Mai Z, Kang X, Zou X. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite. Biosens Bioelectron, 2008, 23: 1032–1038

    Article  CAS  Google Scholar 

  20. Li F, Feng Y, Wang Z, Yang L, Zhuo L, Tang B. Direct electrochemistry of horseradish peroxidase immobilized on the layered calcium carbonate-gold nanoparticles inorganic hybrid composite. Biosens Bioelectron, 2010, 25: 2244–2248

    Article  CAS  Google Scholar 

  21. Huang X, Neretina S, El-Sayed MA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater, 2009, 21: 4880–4910

    Article  CAS  Google Scholar 

  22. Hyland K, Auclair C. The formation of superoxide radical anions by a reaction between O2, OH and dimethyl sulfoxide. Biochem Biophys Res Commun, 1981, 102: 531–537

    Article  CAS  Google Scholar 

  23. Choi MF, Hawkins P. The contact charge transfer absorption spectrum of dimethylsulphoxide with oxygen. Spectrochim Acta A, 1995, 51: 579–585

    Article  Google Scholar 

  24. Sau TK, Murphy CJ. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 2004, 20: 6414–6420

    Article  CAS  Google Scholar 

  25. El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts Chem Res, 2001, 34: 257–264

    Article  CAS  Google Scholar 

  26. Deng Z, Rui Q, Yin X, Liu H, Tian Y. In vivo detection of superoxide anion in bean sprout based on ZnO nanodisks with facilitated activity for direct electron transfer of superoxide dismutase. Anal Chem, 2008, 80: 5839–5846

    Article  CAS  Google Scholar 

  27. Tian Y, Mao L, Okajima T, Ohsaka T. Superoxide dismutase-based third-generation biosensor for superoxide anion. Anal Chem, 2002, 74: 2428–2434

    Article  CAS  Google Scholar 

  28. Di J, Peng S, Shen C, Gao Y, Tu Y. One-step method embedding superoxide dismutase and gold nanoparticles in silica sol-gel network in the presence of cysteine for construction of third-generation biosensor. Biosens Bioelectron, 2007, 23: 88–94

    Article  CAS  Google Scholar 

  29. Shan CS, Yang HF, Song JF, Han D, Ivaska A, Niu L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem, 2009, 81: 2378–2382

    Article  CAS  Google Scholar 

  30. Liu H, Tian Y, Deng Z. Morphology-dependent electrochemistry and electrocatalytical activity of cytochrome c. Langmuir, 2007, 23: 9487–9494

    Article  CAS  Google Scholar 

  31. Liu H, Tian Y, Xia P. Pyramidal, rodlike, spherical gold nanostructures for direct electron transfer of copper, zinc-superoxide dismutase: application to superoxide anion biosensors. Langmuir, 2008, 24: 6359–6366

    Article  CAS  Google Scholar 

  32. Fee JA, DiCorleto PE. Oxidation-reduction properties of bovine erythrocyte superoxide dismutase. Biochemistry, 1973, 12: 4893–4899

    Article  CAS  Google Scholar 

  33. Metrione RM, MacGeorge NL. Mechanism of action of dipeptidyl aminopeptidase. Inhibition by amino acid derivatives and amines. Activation by aromatic compounds. Biochemistry, 1975, 14: 5249–5252

    Article  CAS  Google Scholar 

  34. Haseloff RF, Ebert B, Damerau W. Superoxide generation in alkaline dimethyl sulphoxide. Anal Chim Acta, 1989, 218: 179–184

    Article  CAS  Google Scholar 

  35. Lisdat F, Ge B, Ehrentreinch-Förster E, Reszka R, Scheller FW. Superoxide dismutase activity measurement using cytochrome c-modified electrode. Anal Chem, 1999, 71: 1359–1365

    Article  CAS  Google Scholar 

  36. Di J, Bi Sh, Zhan M. Third-generation superoxide anion sensor based on superoxide dismutase directly immobilized by sol-gel thin film on gold electrode. Biosens Bioelectron, 2004, 19: 1479–1486

    Article  CAS  Google Scholar 

  37. Bi Y, Huang Z, Zhao Y. The interface behavior and biocatalytic activity of superoxide dismutase at carbon nanotube. Biosens Bioelectron, 2006, 21: 1350–1354

    Article  CAS  Google Scholar 

  38. Polticelli F, O’Neill P, Costanzo S, Lania A, Rotilio G, Desideri A. Identification of the residues responsible for the alkaline inhibition of the activity of Cu, Zn superoxide dismutase: a study of native and chemically modified enzymes. Arch Biochem Biophys, 1995, 321: 123–126

    Article  CAS  Google Scholar 

  39. Wang Y, Wu Y, Wang J, Di J. Disposable superoxide anion biosensor based on superoxide dismutase entrapped in silica sol-gel matrix at gold nanoparticles modified ITO electrode. Bioproc Biosyst Eng, 2009, 32: 531–536

    Article  CAS  Google Scholar 

  40. Abdollah S, Abdollah N, Hossain-Ali RP, Hedayatollah G. Direct voltammetry of copper, zinc-superoxide dismutase immobilized onto electrodeposited nickel oxide nanoparticles: fabrication of amperometric superoxide biosensor. Electroanalysis, 2011, 23: 683–691

    Google Scholar 

  41. Gobi K, Mizutani F. Efficient mediatorless superoxide sensors using cytochrome c-modified electrodes: Surface nano-organization for selectivity and controlled peroxidase activity. Electroanal Chem, 2000, 484: 172–181

    Article  CAS  Google Scholar 

  42. Luo YP, Tian Y, Rui Q. Electrochemical assay of superoxide based on biomimetic enzyme at highly conductive TiO2 nanoneedles: from principle to applications in living cells. Chem Commun, 2009, 21: 3014–3016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Nie.

Additional information

Contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Han, Y., Liu, X. et al. Assembly of layer-by-layer films of superoxide dismutase and gold nanorods: A third generation biosensor for superoxide anion. Sci. China Chem. 54, 1284–1291 (2011). https://doi.org/10.1007/s11426-011-4345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-011-4345-4

Keywords

Navigation