Skip to main content
Log in

Mediated electrochemistry of dimethyl sulfoxide reductase promoted by carbon nanotubes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Mediated electrochemistry of dimethyl sulfoxide reductase from Rhodobacter capsulatus (DMSOR) which is immobilized on a bare glassy carbon (GC) electrode and a carbon nanotube (CNT)-modified GC electrode was studied using the Co complex (trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine)cobalt(III) ([Co(trans-diammac)]3+) as a mediator. The cyclic voltammograms of different electrodes were carried out at different substrate (DMSO) concentrations. The results demonstrated that the catalytic current was increased by employing CNT as a promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen PM, Hill HAO, Walton NJ. Surface modifiers for the promotion of direct electrochemistry of cytochrome c. J Electroanal Chem, 1984, 178: 69–86

    Article  CAS  Google Scholar 

  2. Gleria KD, Hill HAO, Lowe VJ, Page DJ. Direct electrochemistry of horse-heart cytochrome c at amino acid-modified gold electrodes. J Electroanal Chem, 1986, 213: 333–338

    Article  Google Scholar 

  3. Moghaddam AB, Ganjali MR, Dinarvand R, Saboury AA, Razavi T, Moosavi-Movahedi AA, Norouzi P. Fundamental studies of the cytochrome c immobilization by the potential cycling method on nanometer-scale nickel oxide surfaces. Biophysical Chemistry, 2007, 129: 259–268

    Article  CAS  Google Scholar 

  4. Lu X, Zoua G., Li J. Hemoglobin entrapped within a layered spongy Co3O4 based nanocomposite featuring direct electron transfer and peroxidase activity. J Mater Chem, 2007, 17: 1427–1432

    Article  CAS  Google Scholar 

  5. Bao SJ, Li CM, Zang JF, Cui XQ, Qiao Y, Guo J. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv Funct Mater, 2008, 18: 591–599

    Article  CAS  Google Scholar 

  6. Topoglidis E, Palomares E, Astuti Y, Green A, Cambell CJ, Durrant JR. Immobilization and electrochemistry of negatively charged proteins on modified nanocrystalline metal oxide electrodes. Electroanalysis, 2005, 17: 1035–1041

    Article  CAS  Google Scholar 

  7. Topoglidis E, Cass AEG., O’Regan B, Durrant JR. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. J Electroanal Chem, 2001, 517: 20–27

    Article  CAS  Google Scholar 

  8. Xu X, Tian B, Kong J, Zhang S, Liu B, Zhao D. Ordered mesoporous niobium oxide film: A novel matrix for assembling functional proteins for bioelectrochemical applications. Adv Mater, 2003, 15: 1932–1936

    Article  CAS  Google Scholar 

  9. Dai Z, Liu S, Ju H, Chen H. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix. Biosens Bioelectro, 2004, 19: 861–867

    Article  CAS  Google Scholar 

  10. Yu J, Ma J, Zhao F, Zeng B. Direct electron-transfer and electrochemical catalysis of hemoglobin immobilized on mesoporous Al2O3. Electrochimica Acta, 2007, 53: 1995–2001

    Article  CAS  Google Scholar 

  11. Feng JJ, Xu JJ, Chen HY. Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-bylayer assembly. Biosens Bioelectro, 2007, 22: 1618–1624

    Article  CAS  Google Scholar 

  12. Wang J, Li M, Shi Z, Li N, GU Z. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal Chem, 2002, 74: 1993–1997

    Article  CAS  Google Scholar 

  13. Cai C, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem, 2004, 332: 75–83

    Article  CAS  Google Scholar 

  14. Zhao GC, Yin ZZ, Zhang L, Wei XW. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2. Electrochem Comm, 2005, 7: 256–260

    Article  CAS  Google Scholar 

  15. Zhang R, Wang X, Shiu KK. Accelerated direct electrochemistry of hemoglobin based on hemoglobin-carbon nanotube (Hb-CNT) assembly. J Colloid Interf Sci, 2007, 316: 517–522

    Article  CAS  Google Scholar 

  16. Lu Y, Yin Y, Wu P, Cai C. Direct electrochemistry and bioelectrocatalysis of myoglobin at a carbon nanotube-modified electrode. Acta Phys-Chim Sin, 2007, 23: 5–11

    Article  Google Scholar 

  17. Salimi A, Noorbakhsh A, Ghadermaz M. Direct electrochemistry and electrocatalytic activity of catalase incorporated onto multiwall carbon nanotubes-modiWed glassy carbon electrode. Anal Biochem, 2005, 344: 16–24

    Article  CAS  Google Scholar 

  18. Cai C, Chen J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal Biochem, 2004, 325: 285–292

    Article  CAS  Google Scholar 

  19. Jiang L, McNeil CJ, Cooper JM. Direct electron transfer reactions of glucose oxidase immobilized at a self-assembled monolayer. J Chem Soc, Chem Commun, 1995, 1293-1295

  20. Ye J, Baldwin RP. Catalytic reduction of myoglobin and hemoglobin at chemically modified electrodes containing methylene blue. Anal Chem, 1988, 60: 2263–2268

    Article  CAS  Google Scholar 

  21. Cui X, Li CM, Zang J, Yu S. Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite. Biosens Bioelectron, 2007, 22: 3288–3292

    Article  CAS  Google Scholar 

  22. Aguey-Zinsou KF, Bernhardt PV, McEwan AG, Ridge JP. The first nonturnover voltammetric response from a molybdenum enzyme: direct electrochemistry of dimethylsulfoxide reductase from Rhodobacter capsulatus. J Biol Inorg Chem, 2002, 7: 879–883

    Article  CAS  Google Scholar 

  23. Chen KI, McEwan AG, Bernhardt PV. Mediated electrochemistry of dimethyl sulfoxide reductase from Rhodobacter capsulatus. J Biol Inorg Chem, 2009, 14: 409–419

    Article  CAS  Google Scholar 

  24. Bennett B, Benson N, McEwan AG., Bray RC. Multiple states of the molybdenum centre of dimethyl sulphoxide reductase from Rhodocacter capsulatus revealed by EPR spectroscopy. Eur J Biochem, 1994, 225: 321–331

    Article  CAS  Google Scholar 

  25. Bernhardt PV, Lawrance GA, Hambley TW. 6,13-Diamino-6,13-dimethyl-1,4,8,11-tetra-azacyclotetradecane, L7, A new, potentially sexidentate polyamine ligand-variable coordination to cobalt (III) and crystal-structure of the complex [CO(L7)]CL2[CLO4]. J Chem Soc Dalton Trans, 1989, 1059–1065

  26. Pearson TW, Dawson HJ, Lackey HB. Natural occurring levels of dimethyl sulfoxide in selected fruits, vegetables, grains, and beverages. J Agric Food Chem, 1981, 29: 1089–1091

    Article  CAS  Google Scholar 

  27. Niki T, Kunugi M, Kohata K, Otsuki A. Annual monitoring of DMS-producing bacteria in Tokyo Bay, Japan, in relation to DMSP. Mar Ecol Prog Ser, 1997, 156: 17–24

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WangChang Geng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, W., Zhang, L. & Bernhardt, P.V. Mediated electrochemistry of dimethyl sulfoxide reductase promoted by carbon nanotubes. Sci. China Chem. 53, 2560–2563 (2010). https://doi.org/10.1007/s11426-010-4162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4162-1

Keywords

Navigation