Skip to main content
Log in

Amphiphilic dendronized homopolymers

  • Articles
  • Special Topic / Highly Branched Polymers — Promising Architectural Macromolecules
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A series of second generation of amphiphilic dendronized homopolymers are efficiently synthesized, and their thermoresponsiveness in aqueous solutions and secondary structures in methanol solutions are described. These polymers are constructed in each repeat unit with various generations of hydrophobic 4-aminoproline and hydrophilic oligoethylene glycol (OEG)-based dendrons, and their over-all hydrophilicity is tuned by varying these dendron generations. Polymers with or without the first generation of proline dendron show good water solubility at room temperature, but exhibit typical thermoresponsive behaviors at elevated temperatures as characterized by turbidity measurements using UV-vis spectroscopy, while the polymer with the secondary generation of proline dendron is not soluble in water. All polymers show ordered secondary structures as evidenced by the optical rotation and circular dichroism experiments. Finally, assembly of these amphiphilic homopolymers into porous films via breath figure (BF) technique is described, and polymer structures are found to show significant influence on the morphology of porous film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harada A, Kataoka K. Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications. Prog Polym Sci, 2006, 31: 949–982

    Article  CAS  Google Scholar 

  2. Wang Y, Xu H, Zhang X. Tuning the amphiphilicity of building blocks: Controlled assembly and disassembly for functional supramolecular materials. Adv Mater, 2009, 21: 2849–2864

    Article  CAS  Google Scholar 

  3. Förster S, Antonietti M. Amphiphilic block copolymers in structure controlled nanomaterial hybrids. Adv Mater, 1998, 10: 195–217

    Article  Google Scholar 

  4. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Drug Delivery Rev, 2001, 47: 113–131

    Article  CAS  Google Scholar 

  5. Velichkova RS, Christova DC. Amphiphilic polymers from macromonomers and telechelics. Prog Polym Sci, 1995, 20: 819–887

    Article  CAS  Google Scholar 

  6. Zhang LF, Eisenberg A. Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science, 1995, 268: 1728–1731

    Article  CAS  Google Scholar 

  7. Zhu J, Hayward RC. Spontaneous generation of amphiphilic block copolymer micelles with multiple morphologies through interfacial instabilities. J Am Chem Soc, 2008, 130: 7496–7502

    Article  CAS  Google Scholar 

  8. Ge Z, Liu S. Supramolecular self-assembly of nonlinear amphiphilic and double hydrophilic block copolymers in aqueous solutions. Macromol Rapid Commun, 2009, 30: 1523–1532

    Article  CAS  Google Scholar 

  9. Zhou Y, Yan D. Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: Progress, characteristics and perspectives. Chem Commun, 2009, 1172–1188

  10. Velichkova RS, Christova DC. Amphiphilic polymers from macromonomers and telechelics. Prog Polym Sci, 1995, 20: 819–887

    Article  CAS  Google Scholar 

  11. Li BS, Cheuk KKL, Yang D, Lam JWY, Wan LJ, Bai C, Tang BZ. Self-assembling of an amphiphilic polyacetylene carrying L-leucine pendants: A homopolymer case. Macromolecules, 2003, 36: 5447–5450

    Article  CAS  Google Scholar 

  12. Kale TS, Klaikherd A, Popere B, Thayumanavan S. Supramolecular assemblies of amphiphilic homopolymers. Langmuir, 2009, 25: 9660–9670

    Article  CAS  Google Scholar 

  13. Zhang A. Synthesis, characterization and applications of dendronized polymers. Prog Chem, 2005, 17: 157–171

    CAS  Google Scholar 

  14. Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev, 2009, 109: 6275–6540

    Article  CAS  Google Scholar 

  15. Zhang A, Zhang B, Wächtersbach E, Schmidt M, Schlüer AD. Efficient synthesis of high molar mass, first-to fourth-generation distributed dendronized polymers by the macromonomer approach. Chem Eur J, 2003, 9: 6083–6092

    Article  CAS  Google Scholar 

  16. Guo Y, van Beek JD, Zhang B, Colussi M, Walde P, Zhang A, Kröger M, Halperin A, Schlüer AD. Tuning polymer thickness: Synthesis and scaling theory of homologous series of dendronized polymers. J Am Chem Soc, 2009, 131: 11841–11854

    Article  CAS  Google Scholar 

  17. Frauenrath H. Dendronized polymers-Building a new bridge from molecules to nanoscopic objects. Prog Polym Sci, 2005, 30, 325–384

    Article  CAS  Google Scholar 

  18. Cheng CX, Jiao TF, Tang RP, Chen EQ, Liu MH, Xi F. Compression-induced hierarchical nanostructures of a poly(ethylene oxide)-block-dendronized polymethacrylate copolymer at the air/water interface. Macromolecules, 2006, 39: 6327–6330

    Article  CAS  Google Scholar 

  19. Rajaram S, Choi T-L, Rolandi M, Fréchet JMJ. Synthesis of dendronized diblock copolymers via ring-opening metathesis polymerization and their visualization using atomic force microscopy. J Am Chem Soc, 2007, 129: 9619–9621

    Article  CAS  Google Scholar 

  20. Cheng CX, Schmidt M, Zhang A, Schlüer AD. Synthesis of thermally switchable poly(N-isopropylacrylamide-block-dendronized methacry-late)s. Macromolecules, 2007, 40: 220–227

    Article  CAS  Google Scholar 

  21. Chen YM, Xiong X. Tailoring dendronized polymers. Chem Commun, 2010, 46: 5049–5060

    Article  CAS  Google Scholar 

  22. Li C, Schlüer AD, Zhang A, Mezzenga R. A new level of hierarchical structure control by use of supramolecular self-assembled dendronized block copolymers. Adv Mater, 2008, 20: 4530–4534

    Article  CAS  Google Scholar 

  23. Li W, Zhang A, Feldman K, Walde P, Schlüter AD. Thermoresponsive dendronized polymers. Macromolecules, 2008, 41: 3659–3667

    Article  CAS  Google Scholar 

  24. Li W, Zhang A, Schlüter A D. Thermoresponsive dendronized polymers with tunable lower critical solution temperatures. Chem Commun, 2008. 5523–5525

  25. Zhang A, Ropero FR, Zanuy D, Alemán K, Meijer EW, Schlüter AD. A rigid, chiral, dendronized polymer with a thermally stable, right-handed helical conformation. Chem Eur J, 2008, 14: 6924–6934

    Article  CAS  Google Scholar 

  26. Xiao X, Wu Y, Sun M, Zhou J, Bo Z, Li L, Chan C. Synthesis and self-assembly of amphiphilic dendronized conjugated polymers. J Polym Sci Part A: Polym Chem, 2008, 46: 574–584

    Article  CAS  Google Scholar 

  27. Bo Z, Rabe JP, Schlüter AD. A poly(para-phenylene) with hydrophobic and hydrophilic dendrons: Prototype of an amphiphilic cylinder with the potential to segregate lengthwise. Angew Chem Int Ed, 1999, 38: 2370–2372

    Article  CAS  Google Scholar 

  28. Bernards DA, Desai TA. Nanoscale porosity in polymer films: Fabrication and therapeutic applications. Soft Matter, 2010, 6: 1621–1631

    Article  CAS  Google Scholar 

  29. Heiko U, Bunz F. Breath figures as a dynamic templating method for polymers and nanomaterials. Adv Mater, 2006, 18: 973–989

    Article  Google Scholar 

  30. Stenzel MH, Kowollik CB, Davis TP. Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. J Polym Sci Part A: Polym Chem, 2006, 44: 2363–2375

    Article  CAS  Google Scholar 

  31. Srinivasarao M, Collings D, Philips A, Patel S. Three-dimensionally ordered array of air bubbles in a polymer film. Science, 2001, 292: 79–83

    Article  CAS  Google Scholar 

  32. Cheng C, Tian Y, Shi Q, Tang R, Xi F. Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir, 2005, 21: 6576–6581

    Article  CAS  Google Scholar 

  33. Liu C, Gao C, Yan D. Honeycomb-patterned photoluminescent films fabricated by self-assembly of hyperbranched polymers. Angew Chem Int Ed, 2007, 46: 4128–4131

    Article  CAS  Google Scholar 

  34. Zhang A, Schlüter A D. Multigram solution-phase synthesis of three diastereomeric tripeptidic second-generation dendrons based on (2S,4S)-, (2S,4R)-, and (2R,4S)-4-aminoprolines. Chem Asian J, 2007, 2: 1540–1548

    Article  CAS  Google Scholar 

  35. Junk MJN, Li W, Schlüter AD, Wegner G, Spiess HW, Zhang A, Hinderberger D, EPR spectroscopic characterization of local nanoscopic heterogeneities during the thermal collapse of thermoresponsive dendronized polymers. Angew Chem Int Ed, 2010, 49: 5683–5687

    Article  CAS  Google Scholar 

  36. Bolisetty S, Schneider C, Polzer F, Ballauff M, Li W, Zhang A, Schlüter AD. Formation of stable mesoglobules by a thermoresponsive dendronized polymer. Macromolecules, 2009, 42: 7122–7128

    Article  CAS  Google Scholar 

  37. Zhang W, Shiotsuki M, Masuda T. A helical poly(macromonomer) consisting of a polyacetylene main chain and polystyrene side chains. Macromol Rapid Commun, 2007, 28: 1115–1121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AFang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Zhang, A. Amphiphilic dendronized homopolymers. Sci. China Chem. 53, 2509–2519 (2010). https://doi.org/10.1007/s11426-010-4136-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4136-3

Keywords

Navigation