Skip to main content
Log in

Covalently derivatized NTA microarrays on porous silicon for multi-mode detection of His-tagged proteins

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Porous silicon (PSi) was applied as a supporting substrate for stepwise covalent derivatization of undecylenic acid, N-hydroxysuccinimidyl ester (NHS-ester) and nitrilotriacetic acid (NTA). By taking the advantages of porous silicon as a supporting matrix such as high surface area to volume ratio, infrared transparency, porous semiconductors for laser desorption/ionization mass spectroscopy, and low fluorescence background, a multi-mode detection biochip prototype can be realized. We prepared such a protein microarray by spotting NTA microarray dots on NHS-ester derivatized PSi, converting the rest of chip area into poly(ethylene glycol) background, loading NiII, and finally affinity-binding histidine-tagged (His-tagged) proteins. With the multi-mode analyses of infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS), and fluorescence scanning, two example proteins, His-tagged thioredoxin-urodilatin and His-tagged aprotinin, were well qualified and quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Finnskog D, Ressine A, Laurell T, Marko-Varga G. Integrated protein microchip assay with dual fluorescent- and MALDI read-out. J Proteome Res, 2004, 3(5): 988–994

    Article  CAS  Google Scholar 

  2. Fidalgo LM, Whyte G, Ruotolo BT, Benesch JLP, Stengel F, Abell C, Robinson CV, Huck WTS. Coupling microdroplet microreactors with mass spectrometry: Reading the contents of single droplets online. Angew Chem Inter Ed, 2009, 48(20): 3665–3668

    Article  CAS  Google Scholar 

  3. Ressine A, Marko-Varga G, Laurell T. Porous silicon protein microarray technology and ultra-superhydrophobic states for improved bioanalytical readout. Biotechnol Annu Rev, 2007, 13: 149–200

    Article  CAS  Google Scholar 

  4. Wei J, Buriak JM, Siuzdak G. Desorption/ionization mass spectrometry on porous silicon. Nature, 1999, 399(6733): 243–246

    Article  CAS  Google Scholar 

  5. Lin VS, Motesharei K, Dancil KPS, Sailor MJ, Ghadiri MR. A porous silicon-based optical interferometric biosensor. Science, 1997, 278(5339): 840–843

    Article  CAS  Google Scholar 

  6. Janshoff A, Dancil KPS, Steinem C, Greiner DP, Lin VSY, Gurtner C, Motesharei K, Sailor MJ, Ghadiri MR. Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing. J Am Chem Soc, 1998, 120(46): 12108–12116

    Article  CAS  Google Scholar 

  7. Chan S, Horner SR, Fauchet PM, Miller BL. Identification of gram negative bacteria using nanoscale silicon microcavities. J Am Chem Soc, 2001, 123(47): 11797–11798

    Article  CAS  Google Scholar 

  8. Kilian KA, Böcking T, Gaus K, Gooding JJ. Peptide-modified optical filters for detecting protease activity. ACS Nano, 2007, 1(4): 355–361

    Article  CAS  Google Scholar 

  9. Go EP, Prenni JE, Wei J, Jones A, Hall SC, Witkowska HE, Shen Z, Siuzdak G, Desorption/ionization on silicon time-of-flight/timeof-flight mass spectrometry. Anal Chem, 2003, 75(10): 2504–2506

    Article  CAS  Google Scholar 

  10. Meng JC, Averbuj C, Lewis WG, Siuzdak G, Finn MG. Cleavable linkers for porous silicon-based mass spectrometry. Angew Chem Int Ed, 2004, 43(10): 1255–1260

    Article  CAS  Google Scholar 

  11. Meng JC, Siuzdak G, Finn MG. Affinity mass spectrometry from a tailored porous silicon surface. Chem Commun, 2004, 18: 2108–2109

    Article  CAS  Google Scholar 

  12. Kilian KA, Bocking T, Gooding JJ. The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. Chem Commun, 2009, 6: 630–640

    Article  CAS  Google Scholar 

  13. Chen L, Chen ZT, Wang J, Xiao SJ, Lu ZH, Gu ZZ, Kang L, Chen J, Wu PH, Tang YC, Liu JN. Gel-pad microarrays templated by patterned porous silicon for dual-mode detection of proteins. Lab Chip, 2009, 9: 756–760

    Article  CAS  Google Scholar 

  14. Guo DJ, Xiao SJ, Xia B, Wei S, Pei J, Pan Y, You XZ, Gu ZZ, Lu Z. Reaction of porous silicon with both end-functionalized organic compounds bearing α-bromo and ω-carboxy groups for immobilization of biomolecules. J Phys Chem B, 2005, 109(43): 20620–20628

    Article  CAS  Google Scholar 

  15. Bocking T, Kilian KA, Gaus K, Gooding JJ. Modifying porous silicon with self-assembled monolayers for biomedical applications: the influence of surface coverage on stability and biomolecule coupling. Adv Funct Mater, 2008, 18(23): 3827–3823

    Article  CAS  Google Scholar 

  16. Stewart MP, Buriak JM. Chemical and biological applications of porous silicon technology. Adv Mater, 2000, 12(12): 859–869

    Article  CAS  Google Scholar 

  17. Buriak JM. Organometallic chemistry on silicon and germanium surfaces. Chem Rev, 2002, 102(5): 1272–1308

    Article  CAS  Google Scholar 

  18. Laurell T, Nilsson J, Marko-Varga G. The quest for high-speed and low-volume bioanalysis. Anal Chem, 2005, 77(13): 265–272

    Article  Google Scholar 

  19. Sigal GB, Bamdad C, Barberis A, Strominger J, Whitesides GM. A self-assembled monolayer for the binding and study of histidinetagged proteins by surface plasmon resonance. Anal Chem, 1996, 68(3): 490–497

    Article  CAS  Google Scholar 

  20. Zhen G, Falconnet D, Kuennemann E, Voros J, Spencer ND, Textor M, Zürcher S. Nitrilotriacetic acid functionalized graft copolymers: A polymeric interface for selective and reversible binding of histidine-tagged proteins. Adv Funct Mater, 2006, 16(2): 243–251

    Article  CAS  Google Scholar 

  21. Shen J, Ahmed T, Vogt A, Wang J, Severin J, Smith R, Dorwin S, Johnson R, Harlan J, Holzman T. Preparation and characterization of nitrilotriacetic-acid-terminated self-assembled monolayers on gold surfaces for matrix-assisted laser desorption ionization-time of flight-mass spectrometry analysis of proteins and peptides. Anal Biochem, 2005, 345(2): 258–269

    Article  CAS  Google Scholar 

  22. Bonanno L, DeLouise L. Physica Status Solidi (a) 2009, 206(6): 1299–1305

    Article  CAS  Google Scholar 

  23. Wegner GJ, Lee HJ, Marriott GR, Corn M. Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein-protein and protein-DNA interactions. Anal Chem, 2003, 75(18): 4740–4746

    Article  CAS  Google Scholar 

  24. Sun Z, Lu W, Tang Y, Zhang J, Chen J, Deng H, Li X, Liu JN. Expression, purification and characterization of human urodilatin in E. coli. Protein Expr Purif, 2007, 55(2): 312–318

    Article  CAS  Google Scholar 

  25. Lu W, Ma ZF, Chen JY, Tang FY, Sun ZY, Liu JN. Expression of recombinant aprotinin in E. coli and the identification of its biological activity. J Nanjing Univ, 2007, 43(5): 457–460

    CAS  Google Scholar 

  26. Boukherroub R, Petit A, Loupy A, Chazalviel J, Ozanam F. Microwave-assisted chemical functionalization of hydrogen-termi-nated porous silicon surfaces. J Phys Chem B, 2003, 107(48): 13459–13462

    Article  CAS  Google Scholar 

  27. Petit A, Delmotte M, Loupy A, Chazalviel J, Ozanam F, Boukherroub R. Microcrowave effects on chemical functionalization of hydrogen-terminated porous silicon nanostructures. J Phys Chem C, 2008, 112(42): 16622–16628

    Article  CAS  Google Scholar 

  28. Xiao SJ, Brunner S, Wieland M. Reactions of surface amines with heterobifunctional cross-linkers bearing both succinimidyl ester and maleimide for grafting biomolecules. J Phy Chem B, 2004, 108(42): 16508–16517

    Article  CAS  Google Scholar 

  29. Xiao SJ, Textor M, Spencer ND, Sigrist H. Covalent attachment of cell-adhesive, (Arg-Gly-Asp)-containing peptides to titanium surfaces. Langmuir, 1998, 14(19): 5507–5516

    Article  CAS  Google Scholar 

  30. Mawhinney DB, Glass JA, Yates JT. FTIR study of the oxidation of porous silicon. J Phys Chem B, 1997, 101(7): 1202–1206

    Article  CAS  Google Scholar 

  31. Ataka K, Giess F, Knoll W, Naumann R, Haber-Pohlmeier S, Richter B, Heberle J. Oriented attachment and membrane reconstitution of his-tagged cytochrome c oxidase to a gold electrode: In situ monitoring by surface-enhanced infrared absorption spectroscopy. J Am Chem Soc, 2004, 126(49): 16199–16206

    Article  CAS  Google Scholar 

  32. Ataka K, Richter B, Heberle J. Orientational control of the physiological reaction of cytochrome c oxidase tethered to a gold electrode. J Phys Chem B, 2006, 110(18): 9339–9347

    Article  CAS  Google Scholar 

  33. Ataka K, Heberle J. Biochemical applications of surface-enhanced infrared absorption spectroscopy. Anal Bioanal Chem, 2007, 388(1): 47–54

    Article  CAS  Google Scholar 

  34. Cheng F, Gamble LJ, Grainger DW, Castner DG. X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry and principal component analysis of the hydrolysis, regeneration and reactivity of NHS-containing organic thin films. Anal Chem, 2007, 79(22): 8781–8788

    Article  CAS  Google Scholar 

  35. Dordi B, Schönherr H, Vancso GJ. Reactivity in the confinement of self-assembled monolayers: Chain length effects on the hydrolysis of self-assembled monolayers of N-hydroxy-succinimide ester disulfides on gold. Langmuir, 2003, 19(14): 5780–5786

    Article  CAS  Google Scholar 

  36. Schnherr H, Feng C, Shovsky A. Interfacial reactions in confinement: Kinetics and temperature dependence of reactions in self-assembled monolayers compared to ultrathin polymer films. Langmuir, 2003, 19(26): 10843–10851

    Article  CAS  Google Scholar 

  37. Lockett MR, Phillips MF, Jarecki JL, Peelen D, Smith LM. A tetrafluorophenyl activated ester self-assembled monolayer for the immobilization of amine-modified oligonucleotides. Langmuir, 2008, 24(1): 69–75

    Article  CAS  Google Scholar 

  38. Dudley AM, Aach J, Steffen MA, Church GM. Measuring absolute expression with microarrays using a calibrated reference sample and an extended signal intensity range. Proc Natl Acad Soc, 2002, 99(11): 7554–7559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ShouJun Xiao or JianNing Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, J., Tang, Y., Xu, N. et al. Covalently derivatized NTA microarrays on porous silicon for multi-mode detection of His-tagged proteins. Sci. China Chem. 54, 526–535 (2011). https://doi.org/10.1007/s11426-010-4128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-4128-3

Keywords

Navigation