Skip to main content
Log in

Evaluation of non-covalent interaction between Seryl-Histidine dipeptide and cyclophilin A using NMR and molecular modeling

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Seryl-Histidine dipeptide (Ser-His) has been previously reported to be capable of cleaving DNAs and carboxyl esters, as well as proteins. The protein cleavage mechanism has not been addressed yet. As an initial step of protein cleavage activity, the non-covalent binding affinity of Ser-His for proteins is a crucial prerequisite. In this work, we took cyclophilin A (CyPA) as a substrate protein, and evaluated the non-covalent interaction between CyPA and Ser-His using a combination of NMR spectroscopy and molecular modeling approach. Two independent Ser-His binding sites on CyPA were detected using 15N-1H heteronuclear single-quantum coherence (HSQC) spectra. Each binding site binds one Ser-His molecule. Dissociation constants, K d1 and K d2, were estimated to be 2.07 and 6.66 mmol/L, respectively, indicative of the weak non-covalent interaction between Ser-His and CyPA. Based on molecular modeling results, we suggest that both the α-amino and the side chain hydroxyl group of Ser-His are crucial for the non-covalent interaction between Ser-His and CyPA. This work sheds light on the molecular mechanism of Ser-His and its analogues cleaving proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 2001, 17:463–516

    Article  CAS  Google Scholar 

  2. Bartlett GJ, Porter CT, Borkakoti N, Thornton JM. Analysis of catalytic residues in enzyme active sites. J Mol Biol, 2002, 324:105–121

    Article  CAS  Google Scholar 

  3. Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg J P, Christiansen L, Huge-Jensen B, Norskov L, Thim L, Menge U. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature, 1990, 343:767–770

    Article  CAS  Google Scholar 

  4. Schrag JD, Li Y, Wu S, Cygler M. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature, 1991, 351:761–765

    Article  CAS  Google Scholar 

  5. Sussman JL, Harel M, Frolow F, Oefner C, Gold-man A, Toker L, Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science, 1991, 253:872–879

    Article  CAS  Google Scholar 

  6. Contreras JA, Karlsson M, Osterlund T, Laurell H, Svensson A, Holm C. Hormone-sensitive lipase is structurally related to acetyl cholinesterase, bile salt-stimulated lipase, and several fungal lipases. building of a three-dimensional model for the catalytic domain of hormone-sensitive lipase. J Biol Chem, 1996, 271:31426–31430

    Article  CAS  Google Scholar 

  7. Ma Y, Chen X, Sun M, Wan R, Zhu C, Li Y, Zhao Y, DNA cleavage function of seryl-histidine dipeptide and its application. Amino Acids, 2008, 35:251–256

    Article  CAS  Google Scholar 

  8. Li YS, Zhao YF, Hatfield S, Wan R, Zhu Q, Li X, McMills M, Ma Y, Li J, Brown KL, He C, Liu F, Chen XZ. Dipeptide seryl-histidine and related oligopeptides cleave DNA, protein, and a carboxyl ester. Bioorg Med Chem, 2000, 8:2675–2680

    Article  CAS  Google Scholar 

  9. Chen J, Wan R, Liu H, Cheng CM, Zhao YF, Cleavage of BSA by a dipeptide Seryl-Histidine. Lett Pept Sci, 2000, 7:325–329

    CAS  Google Scholar 

  10. Chen J, Wan R, Liu H, Jiang YY, Zhao YF, Studies on the cleavage of bovine serum albumin by Ser-His. Chem J Chinese Univ, 2001; 22:1349–1351

    CAS  Google Scholar 

  11. Du HL, Wang YT, Yang LF, Luo WX, Xia NS, Zhao YF, Appraisal of green fluorescent protein as a model substrate for seryl-histidine dipeptide cleaving agent. Lett Pept Sci, 2002, 9:5–10

    CAS  Google Scholar 

  12. Brzyska M, Bacia A, Elbaum D, Oxidative and hydrolytic properties of beta-amyloid. Eur J Biochem, 2001, 268:3443–3454

    Article  CAS  Google Scholar 

  13. Madder A, Li L, Muynck HD, Farcy N, Haver DV, Fant F, Vanhoenacker G, Sandra P, Davis AP, Clercq PJD. Evaluation of a two-stage screening procedure in the combinatorial search for serine protease-like activity. J Comb Chem, 2002; 4:552–562

    Article  CAS  Google Scholar 

  14. Zeng Q, Yin Q, Zhao YF. The study on the interaction between seryl-histidine dipeptide and proteins by circular dichroism and molecular modeling, Bioorg Med Chem, 2005, 13:2679–2689

    Article  CAS  Google Scholar 

  15. Mercier P, Li MX, Sykes BD. Role of the structural domain of troponin C in muscle regulation: NMR studies of Ca2+ binding and subsequent interactions with regions 1–40 and 96–115 of troponin. Biochem, 2000, 39:2902–2911

    Article  CAS  Google Scholar 

  16. Lin DH. Mapping the binding site of P 53 on UBC9 by NMR spectroscopy, Chin J Chem, 2002, 20:937–943

    Article  CAS  Google Scholar 

  17. Jain NU, Venot A, Umemoto K, Leffler H, Prestegard JH. Distance mapping of protein-binding sites using spin-labeled oligosaccharide ligands. Protein Sci, 2001, 10:2393–2400

    Article  CAS  Google Scholar 

  18. Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW. Cyclophilin: A specific cytosolic binding protein for cyclosporin A. Science, 1984; 226:544–547

    Article  CAS  Google Scholar 

  19. Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX. Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature, 1989, 337:476–478

    Article  CAS  Google Scholar 

  20. Ottiger M, Zerbe O, Güntert P, Wüthrich K. The NMR solution conformation of unligated human cyclophilin A. J mol boil, 1997, 272:64–81

    Article  CAS  Google Scholar 

  21. Shi YH, Lin DH, Shen X, Huang JY. Structural stability of CyPA studied by NMR and CD spectra. Chin J Chem, 2006, 24:973–979

    Article  CAS  Google Scholar 

  22. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Gfeifer J, Bax A. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR, 1995, 6:277–293

    Article  CAS  Google Scholar 

  23. Johnson B A, Blevins R A, NMRView: A computer program for the visualization and analysis of NMR data. J Biomol NMR, 1994, 4:603–614

    Article  CAS  Google Scholar 

  24. Zhu G, Bax A. Improved linear prediction of damped NMR signals using modified forward-backward linear prediction. J Magn Reson, 1992, 100:202–207

    CAS  Google Scholar 

  25. Ernst RR, Wokaun A, Bodenhausen G. Principles of NMR in One and Two Dimensions, Oxford: Clarendon Press, 1987. 106

    Google Scholar 

  26. Wang ZX, Jiang RF. A novel two-site binding equation presented in terms of the total ligand concentration. FEBS Lett, 1996, 392:245–249

    Article  CAS  Google Scholar 

  27. Gorlero M, Wieczorek R, Adamala K, Giorgi A, Schininà ME, Stano P, Luisi PL. Ser-His catalyses the formation of peptides and DNAs. FEBS Lett, 2009, 583:153–156

    Article  CAS  Google Scholar 

  28. Morelli X, Guerlesquin F. Mapping the cytochrome c 553 interacting site using 1H and 15N NMR. FEBS Lett, 1999, 460:77–80

    Article  CAS  Google Scholar 

  29. Ke HM, Mayrose D, Cao W. Crystal structure of cyclophilin A complexed with substrate Ala-Pro suggests a solvent-assisted mechanism of cis-trans isomerization. Proc Natl Acad Sci USA, 1993, 90:3324–3328

    Article  CAS  Google Scholar 

  30. Zhao YD, Ke HM. Mechanistic implication of crystal structures of the cyclophilin-dipeptide complexes. Biochemistry, 1996, 35:7362–7368

    Article  CAS  Google Scholar 

  31. Demange L, Moutiez M, Vaudry K, Dugave C. Interaction of human cyclophilin hCyp-18 with short peptides suggests the existence of two functionally independent subsites. FEBS Lett, 2001, 505:191–195

    Article  CAS  Google Scholar 

  32. Sun M, Ma Y, Ji SH, Liu HN, Zhao YF. Molecular modeling on DNA cleavage activity of seryl-histidine and related dipeptide. Bioorg Med Chem Lett, 2004, 14:3711–3714

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DongHai Lin or YuFen Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Shi, Y., Liu, X. et al. Evaluation of non-covalent interaction between Seryl-Histidine dipeptide and cyclophilin A using NMR and molecular modeling. Sci. China Chem. 53, 1987–1993 (2010). https://doi.org/10.1007/s11426-010-3192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-3192-z

Keywords

Navigation