Skip to main content
Log in

A modified multi-reference second order perturbation theory

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A new scheme with extended model space is proposed to improve the calculation of multi-reference second order perturbation theory (MRPT2). The new scheme preserves the concise code structure of the original program, and avoids intruder states in constructions of the potential energy surface, which is confirmed by a series of comparable calculations. The new MRPT2 program is an available tool for the research of molecular excited states and electronic spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K. Second-order perturbation-theory with a CASSCF reference function. J Phys Chem, 1990, 94: 5483–5488

    Article  CAS  Google Scholar 

  2. Andersson K, Malmqvist PA, Roos BO. 2nd-order perturbation-theory with a complete active space self-consistent field reference function. J Chem Phys, 1992, 96: 1218–1226

    Article  CAS  Google Scholar 

  3. Hirao K. Multireference Moller-Plesset perturbation-theory for high-spin open-shell systems. Chem Phys Lett, 1992, 196: 397–403

    Article  CAS  Google Scholar 

  4. Hirao K. Multireference Moller-Plesset method. Chem Phys Lett, 1992, 190: 374–380

    Article  CAS  Google Scholar 

  5. Hirao K. State-specific multireference Moller-Plesset perturbation treatment for singlet and triplet excited-states, ionized states and electron attached states of H2O. Chem Phys Lett, 1993, 201: 59–66

    Article  CAS  Google Scholar 

  6. Kozlowski PM, Davidson ER. Considerations in constructing a multireference 2nd-order perturbation-theory. J Chem Phys, 1994, 100: 3672–3682

    Article  CAS  Google Scholar 

  7. Davidson ER. Construction of open-shell perturbation-theory. Chem Phys Lett, 1995, 241: 432–437

    Article  CAS  Google Scholar 

  8. Andersson K. Different forms of the zeroth-order Hamiltonian in secondorder perturbation theory with a complete active space self-consistent field reference function. Theoret Chim Acta, 1995, 91: 31–46

    CAS  Google Scholar 

  9. Dyall KG. The Choice of a zeroth-order Hamiltonian for 2nd-order perturbation-theory with a complete active space self-consistent-field reference function. J Chem Phys, 1995, 102: 4909–4918

    Article  CAS  Google Scholar 

  10. Cimiraglia R. Many-body multireference Moller-Plesset and Epstein-Nesbet perturbation theory: Fast evaluation of second-order energy contributions. Int J Quantum Chem, 1996, 60: 167–171

    Article  CAS  Google Scholar 

  11. Forsberg N, Malmqvist PA. Multiconfiguration perturbation theory with imaginary level shift. Chem Phys Lett, 1997, 274: 196–204

    Article  CAS  Google Scholar 

  12. Finley JP. Diagrammatic complete active space perturbation theory. J Chem Phys, 1998, 108: 1081–1088

    Article  CAS  Google Scholar 

  13. Wenzel W, Steiner MM. Brillouin-Wigner based multi-reference perturbation theory for electronic correlation effects. J Chem Phys, 1998, 108: 4714–4724

    Article  CAS  Google Scholar 

  14. Fores M, Adamowicz L. A CASSCF-CASPT2 study of the excited-state intramolecular proton transfer reaction in 1-amino-3-propenal using different active spaces. J Comput Chem, 1999, 20: 1422–1431

    Article  CAS  Google Scholar 

  15. Wang YB, Gan ZT, Su KH, Wen ZY. Configuration-based multireference second order perturbation theory. Sci China Ser B-Chem, 2000,43: 567–575

    Article  CAS  Google Scholar 

  16. Choe YK, Witek HA, Finley JP, Hirao K. Identifying and removing intruder states in multireference Moller-Plesset perturbation theory. J Chem Phys, 2001, 114: 3913–3918

    Article  CAS  Google Scholar 

  17. Witek HA, Choe YK, Finley JP, Hirao K. Intruder state avoidance multireference Moller-Plesset perturbation theory. J Comput Chem, 2002, 23: 957–965

    Article  CAS  Google Scholar 

  18. Ghigo G, Roos BO, Malmqvist PA. A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem Phys Lett, 2004, 396: 142–149

    Article  CAS  Google Scholar 

  19. Li AY, Suo B, Wen ZY, Wang YB. Potential energy surfaces for low-lying electronic states of SO2. Sci China Ser B-Chem, 2006, 49: 289–295

    Article  CAS  Google Scholar 

  20. Peng Q, Wang YB, Suo B, Shi QZ, Wen ZY. On the interconversion pathway of HBO 〈−〉 BOH. J Chem Phys, 2004, 121: 778–782

    Article  CAS  Google Scholar 

  21. Han HX, Suo BB, Jiang ZY, Wang YB, Wen ZY. The potential energy curves of low-lying electronic states of S2O. J Chem Phys, 2008, 128: 184312

    Article  Google Scholar 

  22. Lei YB, Suo BB, Li AY, Dou YS, Wang YB, Wen ZY. Involvement of excited triplet state in the photodissociation of cyclobutane. Int J Quantum Chem, 2008, 108: 788–796

    Article  CAS  Google Scholar 

  23. Epstein PS. The stark effect from the point of view of Schroedinger’s quantum theory. Phys Rev, 1926, 28: 0695–0

    Article  Google Scholar 

  24. Nesbet RK. Configuration interaction in orbital theories. Proc Roy Soc Lond Math Phys Sci, 1955, 230: 312–321

    Article  CAS  Google Scholar 

  25. Wang YB, Zhai GH, Suo BB, Gan ZT, Wen ZY. Hole-particle correspondence in CI calculations. Chem Phys Lett, 2003, 375: 134–140

    Article  CAS  Google Scholar 

  26. Lowdin PO. Studies in perturbation theory 4. Solution of eigenvalue problem by projection operator formalism. J Math Phys, 1962, 3: 969–982

    Article  Google Scholar 

  27. Shavitt I. The Ak and Bk approximate CI methods — comment. Chem Phys Lett, 1992, 192: 135–137

    Article  CAS  Google Scholar 

  28. Karlstrom G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L. MOLCAS: a program package for computational chemistry. Comput Mater Sci, 2003, 28: 222–239

    Article  Google Scholar 

  29. Werner HJ, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A. MOLPRO, version 2006.1, a package of ab initio programs designed

  30. Dou YS, Allen RE. Dynamics of the photocyclization of cis-stilbene to dihydrophenanthrene. J Mod Optics, 2004, 50: 2485–2491

    Article  Google Scholar 

  31. Kuthirummal N, Rudakov FM, Evans CL, Weber PM. Spectroscopy and femtosecond dynamics of the ring opening reaction of 1,3-cyclohexadiene. J Chem Phys, 2006, 125: 133307

    Article  Google Scholar 

  32. Huron B, Malrieu JP, Rancured P. Interative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions. J Chem Phys, 1973, 58:5745–5759

    Article  CAS  Google Scholar 

  33. Szabados A, Rolik Z, Tóth G, Surján PR. Multiconfiguration perturbation theory: Size consistency at second order. J Chem Phys, 2005, 122: 114104–114116

    Article  Google Scholar 

  34. Fink R. A size-consistent, unitary invariant, and rapidly convergent wavefunction based on ab initio approach. Chem Phys, 2009, 356: 39–46

    Article  CAS  Google Scholar 

  35. Sherrill CD, Piecuch P. A comparison of renormalized coupled-cluster and multi-reference methods with full configuration interaction benchmarks. J Chem Phys, 2005, 122: 1241041–12411058

    Article  Google Scholar 

  36. Li AY, Wang YB, Dou YS, Wen ZY. Potential energy curves for X 1Δ +g , B 1Δg, and B 1Δ +g states of C2 using MRCI and approximate CI methods. Sci China Ser B-Chem, 2007, 50: 614–619

    Article  CAS  Google Scholar 

  37. Chen F, Davidson ER, Iwata S. New time-independent perturbation theory for the multireference problem. Int J Quant Chem, 2002, 86: 256–264

    Article  CAS  Google Scholar 

  38. Angeli C, Bories B, Cavallini A, Cimiraglia R. Third-order multireference perturbation theory: The n-electron valence state perturbation-theory approach. J Chem Phys, 2006, 124: 054108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenYi Wen.

Additional information

Supported by the National High Technical Development Project (863 project) Foundation (Grant No. 2006AA01A119), the National Natural Science Foundation of China (Grant No. 20773168) and the Natural Science Foundation of CQUPT (A2008-36).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, A., Han, H., Suo, B. et al. A modified multi-reference second order perturbation theory. Sci. China Chem. 53, 933–939 (2010). https://doi.org/10.1007/s11426-009-0270-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0270-1

Keywords

Navigation