Skip to main content
Log in

Synthesis of (S)-(+)-tylophorine and its seco analogues using free radical reaction

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of (S)-(+)-tylophorine and its seco analogues has been accomplished by using free radical reaction. (−)-N-(2,3,6,7-Tetramethoxyphenanthren-9-ylmethyl)-2-bromomethylpyrrolidine (7) and (−)-N-(2,3,6,7-tetramethoxyphenanthren-9-ylcarbonyl)-2-bromomethylpyrrolidine (9) have been obtained for the first time in three and two linear steps from 2,3,6,7-tetramethoxyphenanthrene-9-carboxylic acid (4), respectively. When bromide 7 was subjected to the action of tri-n-butyltin hydride and catalytic amount of azobisisobutyronitrile in acetonitrile at reflux, only a new structural N-((2,3,6,7-tetrame-thoxyphenanthren-9-yl)methyl)piperidine (2) was obtained in excellent yield, without expected (+)- tylophorine. As an alternative route, when bromide 9 was treated with azobisisobutyronitrile and tri-n-butyltin hydride in toluene at reflux, tylophorin-9-one (10) was provided in 33.6% yield. At the same time, a new structural (+)-N-((2,3,6,7-tetramethoxyphenanthren-9-yl)carbonyl)-2-methylpyrrolidine (11) was afforded as the main product in 65% yield. Notably, azobisisobutyronitrile plays dual roles in this reaction, and the possible mechanism has been described. Compounds 10 and 11 were reduced by lithium aluminum hydride to give (+)-tylophorine and (+)-N-((2,3,6,7-tetramethoxyphenanthren-9-yl) methyl)-2-methylpyrrolidine (3), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gellert E. The Indolizidine Alkaloids. J Nat Prod, 1982, 45: 50–73

    Article  CAS  Google Scholar 

  2. Li Z G, Jin Z, Huang R Q. Isolation, total synthesis and biological activity of phenanthroindolizidine and phenanthroquinolizidine alkaloids. Synthesis, 2001, 16: 2365–2378

    Article  Google Scholar 

  3. Michael J P. Indolizidine and quinolizidine alkaloids. Nat Prod Rep, 2001, 18: 520–542

    Article  CAS  Google Scholar 

  4. Bhakuni D S. Biosynthesis and synthesis of biologically active alkaloids of Indian medicinal plants. J Indian Chem Soc, 2002, 79: 203–210

    CAS  Google Scholar 

  5. Michael J P. Indolizidine and quinolizidine alkaloids. Nat Prod Rep, 2005, 22: 603–626

    Article  CAS  Google Scholar 

  6. Gellert E, Rudzats R. The antileukemia activity of tylocrebrine. J Med Chem, 1964, 7: 361–362

    Article  CAS  Google Scholar 

  7. Gupta R S, Siminovitch L. Mutants of CHO cells resistant to the protein synthesis inhibitors, cryptopleurine and tylocrebrine: Genetic and biochemical evidence for common site of action of emetine, cryptopleurine, tylocrebrine, and tubulosine. Biochemistry, 1977, 16: 3209–3214

    Article  CAS  Google Scholar 

  8. Abe F, Hirokawa M, Yamauchi T, Honda K, Hayashi N, Ishi, M, Imagawa S, Iwahana M. Further investigation of phenanthroindolizidine alkaloids from Tylophora tanakae. Chem Pharm Bull (Tokyo), 1998, 46: 767–769

    CAS  Google Scholar 

  9. Wu P L, Rao K V, Su C H, Kuoh C S, Wu T S. Phenanthroindolizidine alkaloids and their cytotoxicity from the leaves of Ficus septica. Heterocycles, 2002, 57: 2401–2408

    Article  CAS  Google Scholar 

  10. Damu A G, Kuo P C, Shi L S, Li C Y, Kuoh C S, Wu P L, Wu T S. Phenanthroindolizidine alkaloids from the stems of Ficus septica. J Nat Prod, 2005, 68: 1071–1075

    Article  CAS  Google Scholar 

  11. Xi Z, Zhang R Y, Yu Z H, Ouyang D, Huang R Q. Selective interaction between tylophorine B and bulged DNA. Bioorg Med Chem Lett, 2005, 15: 2673–2677

    Article  CAS  Google Scholar 

  12. Wei L Y, Brossi A, Kendall R, Bastow K F, Morris-Natschke S L, Shi Q, Lee K H. Antitumor agents 251: Synthesis, cytotoxic evaluation, and structure-activity relationship studies of phenanthrene-based tylophorine derivatives (PBTs) as a new class of antitumor agents. Bioorg Med Chem, 2006, 14: 6560–6569

    Article  CAS  Google Scholar 

  13. Chuang T H, Lee S J, Yang C W, Wu P L. Expedient synthesis and structure-activity relationships of phenanthroindolizidine and phenanthroquinolizidine alkaloids. Org Biomol Chem, 2006, 4: 860–867

    Article  CAS  Google Scholar 

  14. Zhang S, Wei L, Bastow K, Zheng W, Brossi A, Lee K H, Tropsha A. Antitumor agents 252. Application of validated QSAR models to database mining: discovery of novel tylophorine derivatives as potential anticancer agents. J Comput Aided Mol Des, 2007, 21: 97–112

    Article  CAS  Google Scholar 

  15. Fu Y, Lee S K, Min H Y, Lee T, Lee J, Cheng M, Kim S. Synthesis and structure-activity studies of antofine analogues as potential anticancer agents. Bioorg Med Chem Lett, 2007, 17: 97–100

    Article  CAS  Google Scholar 

  16. Rathnagiriswaran A N, Venkatachalam K. The chemical examination of Tylophora asthmatica and the isolation of the alkaloids tylophorine and tylophorinine. Indian J Med Res, 1935, 22: 433–441

    Google Scholar 

  17. An T Y, Huang R Q, Yang Z, Zhang D K, Li G R, Yao Y C, Gao J. Alkaloids from Cynanchum Komarovii with inhibitory activity against the tobacco mosaic virus. Phytochemistry, 2001, 58: 1267–1269

    Article  CAS  Google Scholar 

  18. Li G R, An T Y, Yang Z, Huang R Q, Li Z G., Yao Y C, Yu X S, Gao J. CN 1321642A, 2001

  19. Marchini P, Belleau B. The Synthesis of cryptopleurine and related phenanthroquinolizidines. Can J Chem, 1958, 36: 581–588

    Article  CAS  Google Scholar 

  20. Bradsher C K, Berger H. Aromatic cyclodehydration. XXXVI, The synthesis of (±)-cryptopleurine. J Am Chem Soc, 1958, 80: 930–932

    Article  CAS  Google Scholar 

  21. Pato J M, Pauson P L, Stevens T S. Cryptopleurine, a synthesis based on biogenetic considerations. J Chem Soc (C), 1969, 1309–1314

  22. Wiegrebe W, Faber L, Budzikiewicz H. Alkaloide aus cynanchum vincetoxicum (L.) pers., II Synthese des (±)-6-hydroxy-2.3-dimethoxy-9.11.12.13.13a.14-hexahydro-dibenzo[f,h]pyrrolo[1.2-b]isochinolins. Liebigs Ann Chem, 1970, 733: 125–140

    Article  CAS  Google Scholar 

  23. Govindachari T R. Viswanathan N. Synthesis of dl-septicine. Tetrahedron, 1970, 26: 715–719

    Article  CAS  Google Scholar 

  24. Kotani E, Kitazawa M, Tobinaga S. A new synthesis of the alkaloid (±)-cryptopleurine via anodic oxidation. Tetrahedron, 1974, 30: 3027–3030

    Article  CAS  Google Scholar 

  25. Stevens R V, Luh Y. General methods of alkaloid synthesis. XIII. The total synthesis of (±)-ipalbidine and (±)-septicine. Tetrahedron Lett, 1977, 18: 979–982

    Article  Google Scholar 

  26. Iwao M, Watanabe M, de Silva S O, Snieckus V. Directed metalation of tertiary benzamides. Abbreviated syntheses of phenanthro-quinolizidine and -indolizidine alkaloids. Tetrahedron Lett, 1981, 22: 2349–2352

    Article  CAS  Google Scholar 

  27. Rodrigo R G A. The Alkaloids. New York. Academic Press, 1981, 19: 193–220

    Google Scholar 

  28. Bhakuni D S, Mangla V K. Biosynthesis of tylophorine and tylophorinine. Tetrahedron, 1981, 37: 401–407

    Article  CAS  Google Scholar 

  29. Gellert E. The indolizidine Alkaloids. J Nat Prod, 1982, 45: 50–73

    Article  CAS  Google Scholar 

  30. Iwao M, Mahalanabis K K, Watanabe M, de Silva S O, Snieckus V. Directed ortho metallation of tertiary aromatic amides: A new n-heteroring annelation method and synthesis of phenanthro-quinolizidine and -indolizidine alkaloids. Tetrahedron, 1983, 39: 1955–1962

    Article  CAS  Google Scholar 

  31. Bremmer M L, Khatri N A, Weinreb S M. Quinolizidine Alkaloid Synthesis via the intramolecular imino Diels-Alder reaction. epilupinine and cryptopleurine. J Org Chem, 1983, 48: 3661–3666

    Article  CAS  Google Scholar 

  32. Iida H, Watanave Y, Tanaka M, Kibayashi C. General synthesis of phenanthroindolizidine, phenanthroquinolizidine, and related alkaloids: Preparation of (±)-tylophorine, (±)-cryptopleurine, (±)-septicine, and (±)-Julandine. J Org Chem, 1984, 49: 2412–2418

    Article  CAS  Google Scholar 

  33. Ihara M, Tsuruta M, Fukumoto K, Kametani T. A versatile and stereocontrolled synthesis of quinolizidines and indolizidines using trialkylsilyl trifluoromethanesulphonate: Total synthesis of (±)-tylophorine. J Chem Soc, Chem Commun, 1985, 1159–1161

  34. Hedges S H, Herbert R B, Knagg E, Pasupathy V. The implication of phenylacetaldehydes in the diosynthesis of the phenanthroindolizidine alkaloid, tylophorine. Tetrahedron Lett, 1988, 29: 807–810

    Article  CAS  Google Scholar 

  35. Iwasa K, Kamigauchi M, Takao N, Wiegrebe W. The preparation of the biosynthetic precursor 3,7-dihydroxy-2,6-dimethoxyphenanthroindolizidine. J Nat Prod, 1988, 51: 172–175

    Article  CAS  Google Scholar 

  36. Grieco P A, Parker D T. Quinolizidine synthesis via intramolecular immonium ion based Diels-Alder reactions. Total synthesis of (+−)-lupinine, (+−)-epilupinine, (+−)-cryptopleurine, and (+−)-julandine. J Org Chem, 1988, 53: 3325–3330

    Article  CAS  Google Scholar 

  37. Yerxa R, Yang K, Moore H M. Synthesis of (±)-septicine. Tetrahedron, 1994, 50: 6173–6180

    Article  CAS  Google Scholar 

  38. Pearson W H, Walavalkar R. Synthesis of (±)-tylophorine by the intramolecular cycloaddition of an azide with an ω-chloroalkene. Tetrahedron, 1994, 50: 12293–12304

    Article  CAS  Google Scholar 

  39. Ciufolini M A, Roschangar F A. Unified strategy for the synthesis of phenanthroizidine alkaloids: Preparation of sterically congested pyridines. J Am Chem Soc, 1996, 118, 12082–12089

    Article  CAS  Google Scholar 

  40. Lebrun S, Couture A, Deniau E, Grandclaudon P. Total syntheses of (±)-cryptopleurine, (±)-antofine and (±)-deoxypergularinine. Tetrahedron, 1999, 55: 2659–2670

    Article  CAS  Google Scholar 

  41. Straub C S, Padwa A. Synthesis of the angiotensin converting Enzyme Inhibitor (−)-A58365A via an cycloaddition reaction. Org Lett, 1999, 1: 83–86

    Article  CAS  Google Scholar 

  42. Padwa A, Sheeham S M, Straub C S. An isomünchnone-based method for the synthesis of highly substituted 2(1H)-pyridones. J Org Chem, 1999, 64: 8648–8659

    Article  CAS  Google Scholar 

  43. Banwell M G, Sydnes M O. Utilization of 1-aryl-2,2-dibromocyclopropanes in synthetic approaches to phenanthroquinolizidine and phenanthroindolizidine alkaloids. Aust J Chem, 2004, 57: 537–548

    Article  CAS  Google Scholar 

  44. Furstner A, Kennedy J W. Total syntheses of the tylophora alkaloids cryptopleurine, (−)-antofine, (−)-tylophorine, and (−)-ficuseptine C. Chem Eur J, 2006, 12: 7398–7410

    Article  CAS  Google Scholar 

  45. Camacho-Davila A, Hemdon J W. Total synthesis of antofine using the net [5+5]-cycloaddition of γ,δ-unsaturated carbene complexes and 2-alkynylphenyl ketones as a key step. J Org Chem, 2006, 71: 6682–6685

    Article  CAS  Google Scholar 

  46. Kim S, Lee Y M, Lee J, Lee T, Fu Y, Song Y, Cho J, Kim D. Expedient syntheses of antofine and cryptopleurine via intramolecular 1,3-dipolar cycloaddition. J Org Chem, 2007, 72: 4886–4891

    Article  CAS  Google Scholar 

  47. Jin Z, Li S P, Wang Q M, Huang R Q. Enantioselective approach to antiviral phenanthroindolizidine alkaloids: Synthesis of (+)-tylophorine. Chin Chem Lett, 2004, 15: 1164–1166

    CAS  Google Scholar 

  48. Li H, Hu T S, Wang K L, Liu Y X, Fan Z J, Huang R Q, Wang Q M. Total synehesis and activity of enantioenriched (+)-deoxytylophorinine. Lett Org Chem, 2006, 3: 806–810

    Article  CAS  Google Scholar 

  49. Wang K L, Wang Q M, Huang R Q. An efficient synthesis of a new structural phenanthro[9,10,3′,4′]indolizidine starting from pyrrole. J Org Chem, 2007, 72: 8416–8421

    Article  CAS  Google Scholar 

  50. Cui M B, Wang K L, Wang Q M, Huang R Q. Concise synthesis of benzoindolizidine derivatives and bioactivity evaluation. Lett Org Chem, 2008, 5: 98–102

    Article  CAS  Google Scholar 

  51. Wang K L, Lü M Y, Wang Q M, Huang R Q. Iron(III) chloride-based mild synthesis of phenanthrene and its application to total synthesis of phenanthroindolizidine alkaloids. Tetrahedron, 2008, 64: 7504–7510

    Article  CAS  Google Scholar 

  52. Russel J H, Hunziker H. Synthesis of septicine. Tetrahedron Lett, 1969, 10: 4035–4036

    Article  Google Scholar 

  53. Faber L, Wiegrebe W. Stereospezifische synthese zweier 9,11,12, 13,13a,14-hexahydrodibenzo[f,h]pyrrolo[1,2-b]isochinoline. Hel Chim Acta, 1976, 59: 2201–2212

    Article  CAS  Google Scholar 

  54. Buckley T F, Rapoport H. Amino acids as chiral educts for asymmetric products. Chirally specific syntheses of tylophorine and cryptopleurine. J Org Chem, 1983, 48: 4222–4232

    Article  CAS  Google Scholar 

  55. Nordlander J E, Njoroge F G. A short synthesis of (S)-(+)-tylophorine. J Org Chem, 1987, 52: 1627–1630

    Article  CAS  Google Scholar 

  56. Ihara M, Takino Y, Fukumoto K. Asymmetric total syntheses of (−)-tylophorine via the highly enantioselective intramolecular double michael reaction. Tetrahedron Lett, 1988, 29: 4135–4138

    Article  CAS  Google Scholar 

  57. Ihara M, Takino Y, Tomotake M, Fukumoto K. Asymmetric total synthesis of naturally occurring (R)-(−)-enantiomer of tylophorine via intramolecular double Michael reaction. J Chem Soc Perkin Trans 1, 1990, 2287–2292

    Article  Google Scholar 

  58. Suzuki H, Aoyagi S, Kibayashi C. Enantioselective synthesis of (R)-(−)-Cryptopleurine. Tetrahedron Lett, 1995, 36: 935–936

    Article  CAS  Google Scholar 

  59. Suzuki H, Aoyagi S, Kibayashi C. Asymmetric total synthesis of (R)-(−)-cryptopleurine and (R)-(−)-julandine via highly enantioselective amidoalkylations with N-acylhydrazonium salts. J Org Chem, 1995, 60: 6114–6122

    Article  CAS  Google Scholar 

  60. Comins D L, Chen X, Morgan L A. Enantiopure N-acyldihydropyridones as synthetic intermediates: Asymmetric synthesis of (−)-septicine and (−)-tylophorine. J Org Chem, 1997, 62: 7435–7438

    Article  CAS  Google Scholar 

  61. Kim S, Lee T, Lee E, Lee J, Fan G J, Lee S K, Kim D. Asymmetric total syntheses of (−)-antofine and (−)-cryptopleurine using (R)-(E)-4-(tributylstannyl)but-3-en-2-ol. J Org Chem, 2004, 69: 3144–3149

    Article  CAS  Google Scholar 

  62. Zeng W, Chemler S R. Total synthesis of (S)-(+)-tylophorine via enantioselective intramolecular alkene carboamination. J Org Chem, 2008, 73: 6045–6047

    Article  CAS  Google Scholar 

  63. Athelstan L, Beckwith J. Regio-selectivity and stereo-selectivity in radical reactions. Tetrahedron, 1981, 37: 3073–3100

    Article  Google Scholar 

  64. Hart J H. Free-radical carbon-carbon bond formation in organic synthesis. Science, New Ser, 1984, 223(4639): 883–887

    CAS  Google Scholar 

  65. Giese B. Syntheses with radicals C-C bond formation via organotin and organomercury compounds. Angew Chem Int Ed Engl, 1985, 24: 553–565

    Article  Google Scholar 

  66. Athelstan L, Beckwith J, Schiesser C H. Regio- and stereo-selectivity of alkenyl radical ring closure: A theoretical study. Tetrahedron 1985, 41: 3925–3941

    Article  Google Scholar 

  67. Ramaiah M. Radical reactions in organic synthesis. Tetrahedron, 1987, 43: 3541–3676

    Article  CAS  Google Scholar 

  68. Curran D P. The design and application of free radical chain reactions in organic synthesis. Synthesis, 1988, 417–439

  69. Robins M J, Wilson J S. Smooth and efficient deoxygenation of secondary alcohols. A general procedure for the conversion of ribonucleosides to 2′-deoxynucleosides. J Am Chem Soc, 1981, 103: 932–933

    Article  CAS  Google Scholar 

  70. Robins M J, Wilson J S, Hansske F. Nucleic acid related compounds. 42. A general procedure for the efficient deoxygenation of secondary alcohols. Regiospecific and stereoselective conversion of ribonucleosides to 2′-deoxynucleosides. J Am Chem Soc, 1983, 105: 4059–4065

    Article  CAS  Google Scholar 

  71. Wnuk S F, Robins M J. Stannyl radical-mediated cleavage of π-deficient heterocyclic sulfones. Synthesis of α-fluoro esters and the first homonucleoside α-fluoromethylene phosphonate1. J Am Chem Soc, 1996, 118: 2519–2520

    Article  CAS  Google Scholar 

  72. Irina P S. Synthesis of C-glycosylic compounds using three-membered cyclic intermediates. Cur Org Chem, 2000, 4: 589–608

    Article  Google Scholar 

  73. Nishiyama Y, Yamamoto H, Nakata S, Ishii Y. Intermolecular radical addition of 1-alkoxyalkyl radicals to vinyl derivatives. Chem Lett, 1993, 841–844

  74. Liu J Y, Jang Y J, Lin W W, Liu J T, Yao C F. Triethylaluminum- or triethylborane-induced free radical reaction of alkyl iodides and α,β-unsaturated compounds. J Org Chem, 2003, 68: 4030–4038

    Article  CAS  Google Scholar 

  75. Pignard S, Lopin C, Gouhier G, Piettre S R.. Phosphonodifluoromethyl and phosphonothiodifluoromethyl radicals. Generation and addition onto alkenes and alkynes. J Org Chem, 2006, 71: 31–37

    Article  CAS  Google Scholar 

  76. Kim S, Lim K C, Kim S, Ryu I. Tin-free radical carbonylation: synthesis of acylated oxime ethers using alkyl allyl sulfone precursors, carbon monoxide, and phenylsulfonyl oxime ether. Adv Synth Catal, 2007, 349: 527–530

    Article  CAS  Google Scholar 

  77. Kupchan S M, Wormser H C. Photochemical synthesis of phenanthrenes. Synthesis of aristolochic acid. Tetrahedron Lett. 1965, 6: 359–363

    Article  Google Scholar 

  78. Okuda Y, Morizawa Y, Oshima K, Nozaki H. Intramolecular cyclization mediated by silylmetalation of acetylenes with PhMe2-SiMgMe/CuI and radical nature of the reagent. Tetrahedron Lett, 1984, 25: 2483–2486

    Article  CAS  Google Scholar 

  79. van der Linde L M, van der Weerdt A J A. A novel radical induced rearrangement of the caryophyllene skeleton. Tetrahedron Lett, 1984, 25: 1201–1204

    Article  Google Scholar 

  80. Porter N A, Chang V H T. Macrolide formation by free radical cyclization. J Am Chem Soc, 1987, 109: 4976–4981

    Article  CAS  Google Scholar 

  81. Curran D P, Chen M H, Kim D. Atom transfer cyclization reactions of hex-5-ynyl iodides: Synthetic and mechanistic studies. J Am Chem Soc, 1989, 111: 6265–6276

    Article  CAS  Google Scholar 

  82. Bachi M D, Denenmark D. Cyclizations of ene radicals. Imidoyl radicals as intermediates in the synthesis of heterocyclic compounds. J Am Chem Soc, 1989, 111: 1886–1888

    Article  CAS  Google Scholar 

  83. Enholm E J, Prasad G. Tributyltin hydride-induced O-stannyl ketyls in the cyclization of aldehydes and ketones with alkenes. Tetrahedron Lett, 1989, 30: 4939–4942

    Article  Google Scholar 

  84. Boger D L, Mathvink R J. Intramolecular acyl radical-alkene addition reactions: macrocyclization reactions. J Am Chem Soc, 1990, 112: 4008–4011

    Article  CAS  Google Scholar 

  85. Bachi M D, Denenmark D. Intramolecular addition of carbon-centered tinthioimidoyl radicals to carbon-carbon double bonds. Synthesis of gamma- and delta-thiolactams. J Org Chem, 1990, 55: 3442–3444

    Article  CAS  Google Scholar 

  86. Paquette L A, Leit S M. The first examples of bridgehead bicyclic sultams. J Am Chem Soc, 1999, 121: 8126–8127

    Article  CAS  Google Scholar 

  87. Jiao X-Y, Bentrude W G. A facile route to vinyl- and arylphosphonates by vinyl and aryl radical trapping with (MeO)3P. J Org Chem, 2003, 68: 3303–3306

    Article  CAS  Google Scholar 

  88. David B, Cheng C, Zhong Y C, Sanbo International Publication Number WO 03/070166. 2003, 11/27–12/27

  89. Padwa A, Brodney M A, Lynch S M, Rashatasakhon P, Wang Q, Zhang H J. A new strategy toward indole alkaloids involving an intramolecular cycloaddition/rearrangement cascade. J Org Chem, 2004, 69: 3735–3745

    Article  CAS  Google Scholar 

  90. Tanja K K, Philippe R. Radical-mediated synthesis of racemic deoxypodophyllotoxin and related lignans. Synthesis, 2005, 9: 1459–1466

    Google Scholar 

  91. Kamikawa K., Takemoto I, Takemoto S, Mutuszaka H. Synthesis of helicenes utilizing palladium-catalyzed double C-H arylation reaction. J Org Chem, 2007, 72, 7406–7408

    Article  CAS  Google Scholar 

  92. Pattenden G, Stoker D A, Tomson N M, Cascade radical-mediated cyclisations with conjugated ynone electrophores. An approach to the synthesis of steroids and other novel ring-fused polycyclic carbocycles. Org Biomol Chem, 2007, 5, 1776–1788

    Article  CAS  Google Scholar 

  93. Harmata M, Hong X C, Schreiner P R. Benzothiazines in synthesis: studies directed toward the synthesis of erogorgiaene. J Org Chem, 2008, 73, 1290–1296

    Article  CAS  Google Scholar 

  94. Ding B W, Bentrude W G. Trimethyl phosphite as a rap for alkoxy radicals formed from the ring opening of oxiranylcarbinyl radicals. conversion to alkenes. mechanistic applications to the study of C-C versus C-O ring cleavage. J Am Chem Soc, 2003, 125, 3248–3259

    Article  CAS  Google Scholar 

  95. Kim S, Joe G H, Do J Y. Highly efficient intramolecular addition of aminyl radicals to carbonyl groups: A new ring expansion reaction leading to lactams. J Am Chem Soc, 1993, 115, 3328–3329

    Article  CAS  Google Scholar 

  96. Bachi M D, Barner N, Melman A. Stereoselective synthesis of (±)-α-kainic acid using free radical key reactions. J Org Chem, 1996, 61, 7116–7124

    Article  CAS  Google Scholar 

  97. Malacria M. Selective preparation of complex polycyclic molecules from acyclic precursors via radical mediated- or transition metal-catalyzed cascade reactions. Chem Rev, 1996, 96, 289–306

    Article  CAS  Google Scholar 

  98. McCarrol A J, Walton J C. Programming organic molecules: Design and management of organic syntheses through free-radical cascade processes. Angew Chem Int Ed, 2001, 40, 2224–2248

    Article  Google Scholar 

  99. Takeuchi K, Ishita A, Matsuo J, Ishibashi H. Synthesis of 13a-methylphenanthroindolizidines using radical cascade cyclization: synthetic studies toward (±)-hypoestestatin 1. Tetrahedron, 2007, 63, 11101–11107

    Article  CAS  Google Scholar 

  100. Vatele J M. Prenyl carbamates: preparation and deprotection. Tetrahedron, 2004, 60: 4251–4260

    Article  CAS  Google Scholar 

  101. Fabienne S D, Olivier L, Bernadette G, Marie-Claude S, Gérard L. A general synthesis of enantiopure 1,2-aminoalcohols via chiral morpholinones. Tetrahedron, 2000, 56: 233–248

    Article  Google Scholar 

  102. Herbert R B, Moody C J. A novel synthesis of (±)-tylophorine. Chem Commun, 1970, 121–122

  103. Cragg J E, Herbert R B, Jackson F B, Moody C J, Nicolson I T, Frederick B J, Christopher J M, Ian T N. Phenanthroindolizidine and related alkaloids: Synthesis of tylophorine, septicine, and deoxytylophorinine. J Chem Soc Perkin Trans I, 1982, 2477–2485

  104. Govindachari T R, Lakahmikantlam M V, Rajadurai S. Chemical examination of tylophora asthmatica-IV: Synthesis of tylophorine. Tetrahedron, 1961, 14, 284–287

    Article  CAS  Google Scholar 

  105. Chauncy B, Gellert E. Synthesis of phenanthroindolizidines. II. The synthesis of (±)-tylocrebrine, (±)-tylophorine, (±)-antofine, and (±)-2, 3-dimethoxyphenanthroindolizidine. Aust J Chem, 1970, 23, 2503–2516

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingMin Wang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20872072) and the Key Project of Chinese Ministry of Education (Grant No. 106046)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Wang, K., Cui, M. et al. Synthesis of (S)-(+)-tylophorine and its seco analogues using free radical reaction. Sci. China Ser. B-Chem. 52, 1288–1299 (2009). https://doi.org/10.1007/s11426-009-0183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0183-z

Keywords

Navigation