Skip to main content
Log in

Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces of revolution

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider the boundedness of the rough singular integral operator T Ω,ψ,h along a surface of revolution on the Triebel-Lizorkin space \(\dot F_{p,q}^\alpha (\mathbb{R}^n )\) for Ω ∈ H 1(S n−1) and Ω ∈ L log+L(S n−1) ∪ (U1<q<∞ B (0,0) q (S n−1)), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Qassem H, Pan Y. Singular integrals along surfaces of revolution with rough kernels. SUT J Math, 2003, 39: 55–70

    MathSciNet  MATH  Google Scholar 

  2. Al-Salman A, Pan Y. Singular integrals with rough kernels in L log+L(Sn-1). J London Math Soc, 2002, 66: 153–174

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergh J, Löfström J. Interpolation Spaces, An Introduction. Berlin-Heidelberg: Springer-Verlag, 1976

    Book  MATH  Google Scholar 

  4. Calderón A and Zygmund A. On singular integrals. Amer J Math, 1956, 78: 289–309

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen J, Zhang C. Boundedness of rough singular integral operators on the Triebel-Lizorkin spaces. J Math Anal Appl, 2008, 337: 1048–1052

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen L, Fan D. On singular integrals along surfaces related to block spaces. Integral Equations Operator Theory, 1997, 29: 261–268

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen Y, Ding Y. Rough singular integrals on the Triebel-Lizorkin space and Besov space. J Math Anal Appl, 2008, 347: 493–501

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen Y, Ding Y, Liu H. Rough singular integrals supported on submanifolds. J Math Anal Appl, 2010, 368: 677–691

    Article  MathSciNet  MATH  Google Scholar 

  9. Colzani L. Hardy spaces on sphere. PhD Thesis. Washington: Washington University, 1982

    MATH  Google Scholar 

  10. Ding Y, Xue Q, Yabuta K. On singular integral operators with rough kernel along surface. Integral Equations Operator Theory, 2010, 68: 151–161

    Article  MathSciNet  MATH  Google Scholar 

  11. Duoandikoetxea J, Rubio de Francia J. Maximal and singular integral operators via Fourier transform estimates. Invent Math, 1986, 84: 541–561

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan D, Pan Y. A singular integral operators with rough kernel. Proc Amer Math Soc, 1997, 125: 3695–3703

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan D, Pan Y. Singular integral operators with rough kernels supported by subvarieties. Amer J Math, 1997, 119: 799–839

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan D, Sato S. A note on singular integrals associated with a variable surface of revolution. Math Inequal Appl, 2009, 12: 441–454

    MathSciNet  MATH  Google Scholar 

  15. Fan D, Zheng Q. Maximal singular integral operators along surfaces. J Math Anal Appl, 2002, 267: 746–759

    Article  MathSciNet  MATH  Google Scholar 

  16. Fefferman R. A note on singular integrals. Proc Amer Math Soc, 1979, 74: 266–270

    Article  MathSciNet  MATH  Google Scholar 

  17. Frazier M, Jawerth B, Weiss G. Littlewood-Paley Theory and the Study of Function Spaces. Providence: Amer Math Soc, 1991

    Book  MATH  Google Scholar 

  18. Jiang Y, Lu S. Lp boundedness of a class of maximal singular integral operators (in Chinese). Acta Math Sinica Chin Ser, 1992, 35: 63–72

    MathSciNet  Google Scholar 

  19. Kim W, Wainger S, Wright J, et al. Singular integrals and maximal functions associated to surfaces of revolution. Bull London Math Soc, 1996, 28: 291–296

    Article  MathSciNet  MATH  Google Scholar 

  20. Li W, Si Z, Yabuta K. Boundedness of singular integrals associated to surfaces of revolution on Triebel-Lizorkin spaces. Forum Math, 2014, 28: 57–75

    MathSciNet  MATH  Google Scholar 

  21. Li W, Yabuta K. Some remarks on Marcinkiewicz integrals along submanifolds. Taiwanese J Math, 2012, 16: 1647–1679

    MathSciNet  MATH  Google Scholar 

  22. Lu S. Applications of some block spaces to singular integrals. Front Math China, 2007, 2: 61–72

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu S, Pan Y, Yang D. Rough singular integrals associated to surfaces of revolution. Proc Amer Math Soc, 2001, 129: 2931–2940

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu S, Taibleson M, Weiss G. Spaces Generated by Blocks. Beijing: Beijing Normal University Press, 1989

    MATH  Google Scholar 

  25. Triebel H. Theory of Function Spaces. Basel: Birkhäuser, 1983

    Book  MATH  Google Scholar 

  26. Triebel H. Interpolation Theory, Function Spaces and Differential Operators, 2nd ed. Heidelberg-Leipzig: Johann Ambrosius Barth Verlag, 1995

    MATH  Google Scholar 

  27. Yabuta K. Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces. J Inequal Appl, 2015, doi: 10.1186/s13660-015-0630-7

    Google Scholar 

  28. Ye X, Zhu X. A note on certain block spaces on the unit sphere. Acta Math Sin Engl Ser, 2006, 22: 1843–1846

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Yabuta, K. Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces of revolution. Sci. China Math. 59, 1721–1736 (2016). https://doi.org/10.1007/s11425-016-5154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-5154-1

Keywords

MSC(2010)

Navigation