Skip to main content
Log in

A pedestrian introduction to fast multipole methods

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper provides a conceptual and non-rigorous description of the fast multipole methods for evaluating convolution kernel functions with source distributions. Both the non-oscillatory and the oscillatory kernels are considered. For non-oscillatory kernel, we outline the main ideas of the classical fast multipole method proposed by Greengard and Rokhlin. In the oscillatory case, the directional fast multipole method developed recently by Engquist and Ying is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson C R. An implementation of the fast multipole method without multipoles. SIAM J Sci Statist Comput, 1992, 13: 923–947

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnes J, Hut P. A hierarchical O(N logN) force-calculation algorithm. Nature, 1986, 324: 446–449

    Article  Google Scholar 

  3. Börm S, Grasedyck L, Hackbusch W. Hierarchical matrices. Technical Report 21, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, 2003

    Google Scholar 

  4. Candès E, Demanet L, Ying L. A fast butterfly algorithm for the computation of Fourier integral operators. SIAM Multiscale Model Simul, 2009, 7: 1727–1750

    Article  MATH  Google Scholar 

  5. Engquist B, Ying L. Fast directional multilevel algorithms for oscillatory kernels. SIAM J Sci Comput, 2008, 29: 1710–1737

    Article  MathSciNet  Google Scholar 

  6. Engquist B, Ying L. A fast directional algorithm for high frequency acoustic scattering in two dimensions. Commun Math Sci, 2009, 7: 327–345

    MathSciNet  MATH  Google Scholar 

  7. Greengard L. The rapid evaluation of potential fields in particle systems. ACM Distinguished Dissertations. Cambridge, MA: MIT Press, 1988

    Google Scholar 

  8. Greengard L, Rokhlin V. A fast algorithm for particle simulations. J Comput Phys, 1987, 73: 325–348

    Article  MathSciNet  MATH  Google Scholar 

  9. O’Neil M, Woolfe F, Rokhlin V. An algorithm for the rapid evaluation of special function transforms. Appl Comput Harmon Anal, 2010, 28: 203–226

    Article  MathSciNet  MATH  Google Scholar 

  10. Rokhlin V. Rapid solution of integral equations of scattering theory in two dimensions. J Comput Phys, 1990, 86: 414–439

    Article  MathSciNet  MATH  Google Scholar 

  11. Rokhlin V. Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Appl Comput Harmon Anal, 1993, 1: 82–93

    Article  MathSciNet  MATH  Google Scholar 

  12. Ying L. Sparse Fourier transform via butterfly algorithm. SIAM J Sci Comput, 2009, 31: 1678–1694

    Article  MathSciNet  MATH  Google Scholar 

  13. Ying L, Biros G, Zorin D. A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J Comput Phys, 2004, 196: 591–626

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lexing Ying.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ying, L. A pedestrian introduction to fast multipole methods. Sci. China Math. 55, 1043–1051 (2012). https://doi.org/10.1007/s11425-012-4392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4392-0

Keywords

MSC(2010)

Navigation