Skip to main content
Log in

Necessary and sufficient conditions for the existence of equilibrium in abstract non-autonomous functional differential equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this article, we aim to establish necessary and sufficient conditions that guarantee the existence of equilibria and continuous equilibria for the continuous skew-product semiflow induced by a class of abstract non-autonomous finite-delay functional differential equations without any monotone conditions assumed. A minimal set is constructed in terms of which necessary and sufficient conditions for a continuous equilibrium to exist are also obtained. Several illustrative examples are employed to demonstrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold L. Random Dynamical Systems. Berlin-Heidelberg-New York: Springer, 1998

    MATH  Google Scholar 

  2. Arnold L, Chueshov I. Order-preserving random dynamical systems: equilibria, attractors, applications. Dyn Stability Systems, 1998, 13: 265–280

    MATH  MathSciNet  Google Scholar 

  3. Arnold L, Chueshov I. Cooperative random and stochastic differential equations. Discrete Contin Dyn Syst, 2001, 7: 1–33

    MATH  MathSciNet  Google Scholar 

  4. Chicone C, Latushkin Y. Evolution semigroups in dynamical systems and differential equations. In: Mathematical Surveys and Monographs, vol. 70. Providence, RI: Amer Math Soc, 2002

    Google Scholar 

  5. Chueshov I. Monotone Random Systems. Theory and Applications. In: Lecture Notes in Mathematics, vol. 1779. Berlin-Heidelberg: Springer, 2002

    Google Scholar 

  6. Ellis R. Lectures on Topological Dynamics. New York: Benjamin, 1969

    MATH  Google Scholar 

  7. Fink A, Frederickson P. Uniformly boundedness does not imply almost periodicity. J Differential Equations, 1971, 9: 280–284

    Article  MATH  MathSciNet  Google Scholar 

  8. Hale J, Verduyn Lunel S. Introduction to Functional Differential Equations. In: Applied Mathematical Sciences, vol. 99. Berlin-Heidelberg-New York: Springer, 1993

    Google Scholar 

  9. Hino Y, Murakami S, Naiko T. Functional Differential Equations with Infinite Delay. In: Lecture Notes in Mathematics, vol. 1473. Berlin-Heidelberg: Springer, 1991

    Google Scholar 

  10. Hirsch M. Systems of differential equations which are competitive or cooperative, I: limit sets. SIAM J Appl Math, 1982, 13: 167–179

    Article  MATH  MathSciNet  Google Scholar 

  11. Hirsch M. The dynamical systems approach to differential equations. Bull Amer Math Soc, 1984, 11: 1–64

    Article  MATH  MathSciNet  Google Scholar 

  12. Hirsch M. Systems of differential equations which are competitive or cooperative, II: convergence almost everywhere. SIAM J Math Anal, 1985, 16: 423–439

    Article  MATH  MathSciNet  Google Scholar 

  13. Hirsch M. Stability and convergence in strongly monotone dynamical systems. J Reine Angew Math, 1988, 383: 1–53

    MATH  MathSciNet  Google Scholar 

  14. Hirsch M, Smith H. Monotone dynamical systems. In: Canada A, Drabek P, Fonda A, eds. Handbook of Differential Equations, Ordinary Differential Equations, vol. 2. Amsterdam: Elsevier, 2005, 239–357

    Google Scholar 

  15. Jiang J. Attractors for strongly monotone flows. J Math Anal Appl, 1991, 162: 210–222

    Article  MATH  MathSciNet  Google Scholar 

  16. Jiang J. On the existence and uniqueness of connecting orbits for cooperative systems. Acta Math Sin New Series, 1992, 8: 184–188

    Article  MATH  Google Scholar 

  17. Jiang J. Three and four dimensional cooperative systems with every equilibrium stable. J Math Anal Appl, 1994, 18: 92–100

    Article  Google Scholar 

  18. Jiang J. Five-dimensional cooperative systems with every equilibrium stable. Lect Notes Pure Appl Math, 1996, 176: 121–127

    Google Scholar 

  19. Jiang J, Yu S. Stable cycles for attractors of strongly monotone discrete-time dynamical systems. J Math Anal Appl, 1996, 202: 349–362

    Article  MATH  MathSciNet  Google Scholar 

  20. Jiang J, Zhao X Q. Convergence in monotone and uniformly stable skew-product semiflows with applications. J Reine Angew Math, 2005, 589: 21–55

    MATH  MathSciNet  Google Scholar 

  21. Johnson R. A linear, almost periodic equation with an almost automorphic solution. Proc Amer Math Soc, 1981, 82: 199–205

    MATH  MathSciNet  Google Scholar 

  22. Krasnoselskii M. Positive Solutions of Operator Equations. Noordhoff: Groningen, 1964

    Google Scholar 

  23. Krasnoselskii M. The Operator of Translation Along Trajectories of Differential equations. In: Translations of Mathematical Monographs vol. 19. Providence, RI: Amer Math Soc, 1968

    Google Scholar 

  24. Krause U, Ranft P. A limit set trichotomy for monotone nonlinear dynamical systems. Nonlinear Anal, 1992, 19: 375–392

    Article  MATH  MathSciNet  Google Scholar 

  25. Novo S, Núñez C, Obaya R. Almost automorphic and almost periodic dynamics for quasimonotone nonautonomous functional differential equations. J Dynam Differential Equations, 2005, 17: 589–619

    Article  MATH  MathSciNet  Google Scholar 

  26. Opial Z. Sur une équation différentielle presque-périodique sans solution presque-périodique. Bull Acad Polon Sci Ser Math Astr Phys, 1961, IX: 673–676

    MathSciNet  Google Scholar 

  27. Ortega R, Tarallo M. Almost periodic upper and lower solutions. J Differential Equations, 2003, 193: 343–358

    Article  MATH  MathSciNet  Google Scholar 

  28. Sacker R, Sell G. Lifting Properties in Skew-Product Flows with Applications to Differential Equations. In: Mem Amer Math Soc, vol. 190. Providence, RI: Amer Math Soc, 1977

    Google Scholar 

  29. Selgrade J. Asymptotic behavior of solutions to single loop positive feedback systems. J Differential Equations, 1980, 38: 80–103

    Article  MATH  MathSciNet  Google Scholar 

  30. Sell G. Topological Dynamics and Ordinary Differential Equations. London: Van Nostrand-Reinhold, 1971

    MATH  Google Scholar 

  31. Shen W, Yi Y. Dynamics of almost periodic scalar parabolic equations. J Differential Equations, 1995, 122: 114–136

    Article  MATH  MathSciNet  Google Scholar 

  32. Shen W, Yi Y. Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows. In: Mem Amer Math Soc, vol. 647. Providence, RI: Amer Math Soc, 1998

    Google Scholar 

  33. Smith H. Systems of ordinary differential equations which generate an order preserving flow. A survey of results. SIAM Rev, 1988, 30: 87–113

    Article  MATH  MathSciNet  Google Scholar 

  34. Smith H. Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems. Providence, RI: Amer Math Soc, 1995

    Google Scholar 

  35. Smith H, Thieme H. Strongly order preserving semiflows generated by functional differential equations. J Differential Equations, 1991, 93: 332–363

    Article  MATH  MathSciNet  Google Scholar 

  36. Takác P. Linearly stable subharmonic orbits in strongly monotone time-periodic dynamical systems. Proc Amer Math Soc, 1992, 115: 691–698

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang Y, Jiang J. The general properties of discrete-time competitive dynamical systems. J Differential Equations, 2001, 176: 470–493

    Article  MATH  MathSciNet  Google Scholar 

  38. Wang Y, Jiang J. Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems. J Differential Equations, 2002, 186: 611–632

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiLiang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Z., Li, X. Necessary and sufficient conditions for the existence of equilibrium in abstract non-autonomous functional differential equations. Sci. China Math. 53, 2045–2059 (2010). https://doi.org/10.1007/s11425-010-3012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-010-3012-0

Keywords

MSC(2000)

Navigation