Skip to main content

Advertisement

Log in

In vitro and in vivo human metabolism of a new synthetic cannabinoid NM-2201 (CBL-2201)

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

In 2014, NM-2201 (CBL-2201), a novel synthetic cannabinoid (SC), was detected by scientists at Russian and US laboratories. It has been already added to the list of scheduled drugs in Japan, Sweden and Germany. Unfortunately, no human metabolism data are currently available, which makes it challenging to confirm its intake, especially given that all SCs investigated thus far have been found to be extensively metabolized. The present study aims to recommend appropriate marker metabolites by investigating NM-2201 metabolism in human hepatocytes, and to confirm the results in authentic human urine specimens. For the metabolic stability assay, 1 µM NM-2201 was incubated in human liver microsomes (HLMs) for up to 1 h; for metabolite profiling, 10 µM of NM-2201 was incubated in human hepatocytes for 3 h. Two authentic urine specimens from NM-2201-positive cases were subjected to β-glucuronidase hydrolysis prior to analysis. The identification of metabolites in hepatocyte samples and urine specimens was achieved with high-resolution mass spectrometry via information-dependent acquisition. NM-2201 was quickly metabolized in HLMs, with an 8.0-min half-life. In human hepatocyte incubation samples, a total of 13 NM-2201 metabolites were identified, generated mainly from ester hydrolysis and further hydroxylation, oxidative defluorination and subsequent glucuronidation. M13 (5-fluoro PB-22 3-carboxyindole) was found to be the major metabolite. In the urine specimens, the parent drug NM-2201 was not detected; M13 was the predominant metabolite after β-glucuronidase hydrolysis. Therefore, based on the results of our study, we recommend M13 as a suitable urinary marker metabolite for confirming NM-2201 and/or 5F-PB-22 intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreiros N (2009) ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 44:832–837

    Article  PubMed  Google Scholar 

  2. Namera A, Kawamura M, Nakamoto A, Saito T, Nagao M (2015) Comprehensive review of the detection methods for synthetic cannabinoids and cathinones. Forensic Toxicol 33:175–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pertwee RG (2006) Cannabinoid pharmacology: the first 66 years. Br J Pharmacol 147(Suppl 1):S163–S171

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Huffman JW, Dai D, Martin BR, Compton DR (1994) Design, synthesis and pharmacology of cannabimimetic indoles. Bioorg Med Chem Lett 4:563–566

    Article  Google Scholar 

  5. Cooper ZD (2016) Adverse effects of synthetic cannabinoids: management of acute toxicity and withdrawal. Curr Psychiatry Rep 18:52

    Article  PubMed  PubMed Central  Google Scholar 

  6. Scheidweiler KB, Jarvis MJ, Huestis MA (2015) Nontargeted SWATH acquisition for identifying 47 synthetic cannabinoid metabolites in human urine by liquid chromatography-high-resolution tandem mass spectrometry. Anal Bioanal Chem 407:883–897

    Article  CAS  PubMed  Google Scholar 

  7. Hermanns-Clausen M, Kneisel S, Szabo B, Auwärter V (2013) Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 108:534–544

    Article  PubMed  Google Scholar 

  8. Seely KA, Lapoint J, Moran JH, Fattore L (2012) Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids. Prog Neuropsychopharmacol Biol Psychiatry 39:234–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Forrester MB, Kleinschmidt K, Schwarz E, Young A (2012) Synthetic cannabinoid and marijuana exposures reported to poison centers. Hum Exp Toxicol 31:1006–1011

    Article  CAS  PubMed  Google Scholar 

  10. Young AC, Schwarz E, Medina G, Obafemi A, Feng SY, Kane C, Kleinschmidt K (2012) Cardiotoxicity associated with the synthetic cannabinoid, K9, with laboratory confirmation. Am J Emerg Med 30(1320):e1325–e1327

    Google Scholar 

  11. Ustundag MF, Ozhan Ibis E, Yucel A, Ozcan H (2015) Synthetic cannabis-induced mania. Case Rep Psychiatry 2015:310930. doi:10.1155/2015/310930

    PubMed  PubMed Central  Google Scholar 

  12. Wohlfarth A, Gandhi AS, Pang S, Zhu M, Scheidweiler KB, Huestis MA (2014) Metabolism of synthetic cannabinoids PB-22 and its 5-fluoro analog, 5F-PB-22, by human hepatocyte incubation and high-resolution mass spectrometry. Anal Bioanal Chem 406:1763–1780

    Article  CAS  PubMed  Google Scholar 

  13. Uchiyama N, Asakawa K, Kikura-Hanajiri R, Tsutsumi T, Hakamatsuka T (2015) A new pyrazole-carboxamide type synthetic cannabinoid AB-CHFUPYCA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(cyclohexylmethyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxamide] identified in illegal products. Forensic Toxicol 33:367–373

    Article  CAS  Google Scholar 

  14. Diao X, Scheidweiler KB, Wohlfarth A, Zhu M, Pang S, Huestis MA (2016) Strategies to distinguish new synthetic cannabinoid FUBIMINA (BIM-2201) intake from its isomer THJ-2201: metabolism of FUBIMINA in human hepatocytes. Forensic Toxicol. doi:10.1007/s11419-016-0312-2

    PubMed Central  Google Scholar 

  15. Holm NB, Nielsen LM, Linnet K (2015) CYP3A4 mediates oxidative metabolism of the synthetic cannabinoid AKB-48. AAPS J 17:1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chimalakonda KC, Seely KA, Bratton SM, Brents LK, Moran CL, Endres GW, James LP, Hollenberg PF, Prather PL, Radominska-Pandya A, Moran JH (2012) Cytochrome P450-mediated oxidative metabolism of abused synthetic cannabinoids found in K2/Spice: identification of novel cannabinoid receptor ligands. Drug Metab Dispos 40:2174–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shevyrin V, Melkozerov V, Nevero A, Eltsov O, Baranovsky A, Shafran Y (2014) Synthetic cannabinoids as designer drugs: new representatives of indol-3-carboxylates series and indazole-3-carboxylates as novel group of cannabinoids. Identification and analytical data. Forensic Sci Int 244:263–275

    Article  CAS  PubMed  Google Scholar 

  18. Kondrasenko AA, Goncharov EV, Dugaev KP, Rubaylo AI (2015) CBL-2201. Report on a new designer drug: napht-1-yl 1-(5-fluoropentyl)-1H-indole-3-carboxylate. Forensic Sci Int 257:209–213

    Article  CAS  PubMed  Google Scholar 

  19. Castaneto MS, Wohlfarth A, Pang S, Zhu M, Scheidweiler KB, Kronstrand R, Huestis MA (2015) Identification of AB-FUBINACA metabolites in human hepatocytes and urine using high-resolution mass spectrometry. Forensic Toxicol 33:295–310

    Article  CAS  Google Scholar 

  20. Wohlfarth A, Castaneto MS, Zhu M, Pang S, Scheidweiler KB, Kronstrand R, Huestis MA (2015) Pentylindole/pentylindazole synthetic cannabinoids and their 5-fluoro analogs produce different primary metabolites: metabolite profiling for AB-PINACA and 5F-AB-PINACA. AAPS J 17:660–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. www.bluelight.org (2016) http://www.bluelight.org/vb/threads/721477-Any-Information-about-NM-2201. Accessed 28 April, 2016

  22. Sobolevsky T, Prasolov I, Rodchenkov G (2012) Detection of urinary metabolites of AM-2201 and UR-144, two novel synthetic cannabinoids. Drug Test Anal 4:745–753

    Article  CAS  PubMed  Google Scholar 

  23. Andersson M, Diao X, Wohlfarth A, Scheidweiler KB, Huestis MA (2016) Metabolic profiling of new synthetic cannabinoids AMB and 5F-AMB by human hepatocyte and liver microsome incubations and high-resolution mass spectrometry. Rapid Commun Mass Spectrom 30:1067–1078

    Article  CAS  PubMed  Google Scholar 

  24. Diao X, Pang X, Xie C, Guo Z, Zhong D, Chen X (2014) Bioactivation of 3-n-butylphthalide via sulfation of its major metabolite 3-hydroxy-NBP: mediated mainly by sulfotransferase 1A1. Drug Metab Dispos 42:774–781

    Article  PubMed  Google Scholar 

  25. Soars MG, McGinnity DF, Grime K, Riley RJ (2007) The pivotal role of hepatocytes in drug discovery. Chem-Biol Interact 168:2–15

    Article  CAS  PubMed  Google Scholar 

  26. Castaneto MS, Wohlfarth A, Pang SK, Zhu MS, Scheidweiler KB, Kronstrand R, Huestis MA (2015) Identification of AB-FUBINACA metabolites in human hepatocytes and urine using high-resolution mass spectrometry. Forensic Toxicol 33:295–310

    Article  CAS  Google Scholar 

  27. Diao X, Scheidweiler KB, Wohlfarth A, Pang S, Kronstrand R, Huestis MA (2016) In vitro and in vivo human metabolism of synthetic cannabinoids FDU-PB-22 and FUB-PB-22. AAPS J 18:455–464

    Article  CAS  PubMed  Google Scholar 

  28. Wang P, Zhao Y, Zhu Y, Sun J, Yerke A, Sang S, Yu Z (2016) Metabolism of dictamnine in liver microsomes from mouse, rat, dog, monkey, and human. J Pharm Biomed Anal 119:166–174

    Article  CAS  PubMed  Google Scholar 

  29. Ellefsen KN, Wohlfarth A, Swortwood MJ, Diao X, Concheiro M, Huestis MA (2016) 4-Methoxy-α-PVP: in silico prediction, metabolic stability, and metabolite identification by human hepatocyte incubation and high-resolution mass spectrometry. Forensic Toxicol 34:61–75

    Article  CAS  PubMed  Google Scholar 

  30. Baranczewski P, Stanczak A, Sundberg K, Svensson R, Wallin A, Jansson J, Garberg P, Postlind H (2006) Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development. Pharmacol Rep 58:453–472

    CAS  PubMed  Google Scholar 

  31. Swortwood MJ, Carlier J, Ellefsen KN, Wohlfarth A, Diao X, Concheiro-Guisan M, Kronstrand R, Huestis MA (2016) In vitro, in vivo and in silico metabolic profiling of α-pyrrolidinopentiothiophenone, a novel thiophene stimulant. Bioanalysis 8:65–82

    Article  CAS  PubMed  Google Scholar 

  32. Wang P, Chen H, Sang S (2016) Trapping methylglyoxal by genistein and its metabolites in mice. Chem Res Toxicol 29:406–414

    Article  CAS  PubMed  Google Scholar 

  33. McNaney CA, Drexler DM, Hnatyshyn SY, Zvyaga TA, Knipe JO, Belcastro JV, Sanders M (2008) An automated liquid chromatography-mass spectrometry process to determine metabolic stability half-life and intrinsic clearance of drug candidates by substrate depletion. Assay Drug Dev Technol 6:121–129

    Article  CAS  PubMed  Google Scholar 

  34. Diao X-X, Zhong K, Li X-L, Zhong D-F, Chen X-Y (2015) Isomer-selective distribution of 3-n-butylphthalide (NBP) hydroxylated metabolites, 3-hydroxy-NBP and 10-hydroxy-NBP, across the rat blood-brain barrier. Acta Pharmacol Sin 36:1520–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vikingsson S, Josefsson M, Green H (2015) Identification of AKB-48 and 5F-AKB-48 metabolites in authentic human urine samples using human liver microsomes and time of flight mass spectrometry. J Anal Toxicol 39:426–435

    Article  CAS  PubMed  Google Scholar 

  36. Lave T, Dupin S, Schmitt C, Valles B, Ubeaud G, Chou RC, Jaeck D, Coassolo P (1997) The use of human hepatocytes to select compounds based on their expected hepatic extraction ratios in humans. Pharmaceut Res 14:152–155

    Article  CAS  Google Scholar 

  37. Thomsen R, Nielsen LM, Holm NB, Rasmussen HB, Linnet K (2015) Synthetic cannabimimetic agents metabolized by carboxylesterases. Drug Test Anal 7:565–576

    Article  CAS  PubMed  Google Scholar 

  38. Michael JP (1999) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 16:697–709

    Article  CAS  PubMed  Google Scholar 

  39. Diao X, Wohlfarth A, Pang S, Scheidweiler KB, Huestis MA (2016) High-resolution mass spectrometry for characterizing the metabolism of synthetic cannabinoid THJ-018 and its 5-fluoro analog THJ-2201 after incubation in human hepatocytes. Clin Chem 62:157–169

    Article  CAS  PubMed  Google Scholar 

  40. Li XD, Xia SQ, Lv Y, He P, Han J, Wu MC (2004) Conjugation metabolism of acetaminophen and bilirubin in extrahepatic tissues of rats. Life Sci 74:1307–1315

    Article  CAS  PubMed  Google Scholar 

  41. Gao C, Zhang H, Guo Z, You T, Chen X, Zhong D (2012) Mechanistic studies on the absorption and disposition of scutellarin in humans: selective OATP2B1-mediated hepatic uptake is a likely key determinant for its unique pharmacokinetic characteristics. Drug Metab Dispos 40:2009–2020

    Article  CAS  PubMed  Google Scholar 

  42. Xie C, Zhou J, Guo Z, Diao X, Gao Z, Zhong D, Jiang H, Zhang L, Chen X (2013) Metabolism and bioactivation of famitinib, a novel inhibitor of receptor tyrosine kinase, in cancer patients. Br J Pharmacol 168:1687–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao R, Li L, Xie C, Diao X, Zhong D, Chen X (2012) Metabolism and pharmacokinetics of morinidazole in humans: identification of diastereoisomeric morpholine N +-glucuronides catalyzed by UDP glucuronosyltransferase 1A9. Drug Metab Dispos 40:556–567

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Wang K, Jiang Y-Z, Chang X-W, Dai C-F, Zheng J (2014) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) inhibits human ovarian cancer cell proliferation. Cell Oncol 37:429–437

    Article  CAS  Google Scholar 

  45. Li AP, Gorycki PD, Hengstler JG, Kedderis GL, Koebe HG, Rahmani R, de Sousas G, Silva JM, Skett P (1999) Present status of the application of cryopreserved hepatocytes in the evaluation of xenobiotics: consensus of an international expert panel. Chem-Biol Interact 121:117–123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health. NM-2201 was generously donated by the US Drug Enforcement Administration. We also appreciate help from Dr. Ariane Wohlfarth in performing the HLMs metabolic stability assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl B. Scheidweiler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, X., Carlier, J., Zhu, M. et al. In vitro and in vivo human metabolism of a new synthetic cannabinoid NM-2201 (CBL-2201). Forensic Toxicol 35, 20–32 (2017). https://doi.org/10.1007/s11419-016-0326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-016-0326-9

Keywords

Navigation