Skip to main content
Log in

Macrocarquinoids A–C, new meroterpenoids from Sargassum macrocarpum

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The production and accumulation of advanced glycation end products (AGEs) have been implicated in diabetes and diabetic complication. This study was conducted as a search for an AGE inhibitor from brown alga, Sargassum macrocarpum. Separation and purification were performed using AGEs inhibitory activity as an index, yielding isolation of 11 meroterpenoids, of which 3 were new compounds: macrocarquinoids A (1), B (6), and C (9). Their structures were elucidated using NMR spectral analysis with 2D techniques. All tested compounds showed AGEs inhibitory activity. Particularly, macrocarquinoid C (9) possessed the strongest activity (IC50: 1.0 mM) of isolated compounds. This activity was stronger than that of aminoguanidine (positive control).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: review. Diabetologia 44:129–146

    Article  CAS  Google Scholar 

  2. Polsen MW, Hedegaard RV, Andersen JM, de Courten B, Bügel S, Nielsen J, Skibted LH, Dragsted LO (2013) Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol 60:10–37

    Article  Google Scholar 

  3. Takeuchi M, Makita Z (2001) Alternative routes for the formation of immunochemically distinct advanced glycation end-products in vivo. Curr Mol Med 3:305–315

    Article  Google Scholar 

  4. Takeuchi M, Yamagishi S (2004) Alternative routes for the formation of glyceraldehyde-derived AGEs (TAGE) in vivo. Med Hypotheses 63:453–455

    Article  CAS  Google Scholar 

  5. Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21

    Article  CAS  Google Scholar 

  6. Li J, Liu D, Sun L, Lu Y, Zhang Z (2012) Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci 317:1–5

    Article  CAS  Google Scholar 

  7. Münch G, Thome J, Foley P, Schinzel R, Riederer P (1997) Advanced glycation endproducts in ageing and Alzheimer’s diseases. Brain Res Rev 23:134–143

    Article  Google Scholar 

  8. Kumar Pasupulati A, Chitra PS, Reddy GB (2016) Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy. Biomol Concepts 7:293–309

    Article  CAS  Google Scholar 

  9. Bellier J, Nokin MJ, Lardé E, Karoyan P, Peulen O, Castronovo J, Bellahcéne A (2019) Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. Diabetes Res Clin Pract 148:200–211

    Article  CAS  Google Scholar 

  10. Yamagishi S, Amano S, Inagaki Y, Okamoto T, Koga K, Sasaki N, Yamamoto H, Takeuchi M, Makita Z (2002) Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun 293:973–978

    Article  Google Scholar 

  11. Okamoto T, Yamagishi S, Inagaki Y, Amano S, Koga K, Abe R, Takeuchi M, Ohno S, Yoshimura A, Makita Z (2002) Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. FASEB J 16:1928–1930

    Article  CAS  Google Scholar 

  12. Abe R, Shimizu T, Sugawara H, Watanabe H, Nakamura H, Choei H, Sasaki N, Yamagishi TM, Shimizu H (2004) Regulation of human melanoma growth and metastasis by AGE–AGE receptor interactions. J Invest Dermatol 122:461–467

    Article  CAS  Google Scholar 

  13. Greven WL, Waanders F, Nagai R, van den Heuvel MC, Navis G, van Goor H (2005) Mesangial accumulation of GA-pyridine, a novel glycolaldehyde-derived AGE, in human renal disease. Kidney Int 68:595–602

    Article  CAS  Google Scholar 

  14. Sun P, Cheng KW, He Y, Liu B, Mao X, Chen F (2018) Screening and identification of inhibitors of advanced glycation endproduct formation from microalgal extracts. Food Funct 9:1683–1691

    Article  CAS  Google Scholar 

  15. Yang R, Wang WX, Chen HJ, He ZC, Jia AQ (2018) The inhibition of advanced glycation end-products by five fractions and three main flavonoids from Camellia nitidissima Chi flowers. J Food Drug Anal 26:252–259

    Article  Google Scholar 

  16. Tang Y, Chen A (2014) Curcumin eliminates the effect of advanced glycation end products (AGEs) on the divergent regulation of gene expression of receptors of AGEs by interrupting leptin signaling. Lab Invest 94:503–516

    Article  CAS  Google Scholar 

  17. Upadhyay A, Tuenter E, Ahmad R, Amin A, Exarchou V, Apers S, Hermans N, Pieters L (2014) Kavalactones, a novel class of protein glycation and lipid peroxidation inhibitors. Planta Med 80:1001–1008

    Article  CAS  Google Scholar 

  18. Manabe Y, Takii Y, Sugawara T (2020) Siphonaxanthin, a carotenoid from green algae, suppresses advanced glycation end product-induced inflammatory responses. J Nat Med 74:127–134

    Article  CAS  Google Scholar 

  19. Sugiura S, Minami Y, Taniguchi R, Tanaka R, Miyake H, Mori T, Ueda M, Shibata T (2017) Evaluation of anti–glycation activities of phlorotannins in human and bovine serum albumin–methylglyoxal models. Nat Prod Commun 12:1793–1796

    Google Scholar 

  20. Sugiura S, Taniguchi R, Nishioka Y, Iwase R, Tanaka R, Miyake H, Mori T, Ueda M, Shibata T (2018) Evaluation of anti–glycation activities of phlorotannins in human and bovine serum albumin—glyceraldehyde models. Nat Prod Commun 13:1007–1010

    Google Scholar 

  21. Liu H, Gu L (2012) Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation endproducts by scavenging reactive carbonyls. J Agric Food Chem 60:1326–1334

    Article  CAS  Google Scholar 

  22. Kamei Y, Sagara A (2002) Neurite outgrowth promoting activity of marine algae from Japan against rat adrenal medulla pheochromocytoma cell line, PC12D. Cytotechnology 40:99–106

    Article  CAS  Google Scholar 

  23. Tsang CK, Sagara A, Kamei Y (2001) Structure-activity relationship of a neurite outgrowth-promoting substance purified from the brown alga, Sargassum macrocarpum, and its analogues on PC12D cells. J Appl Phycol 13:349–357

    Article  CAS  Google Scholar 

  24. Tsang CK, Kamei Y (2004) Sargaquinoic acid supports the survival of neuronal PC12D cells in a growth factor-independent manner. Eur J Pharmacol 488:11–18

    Article  CAS  Google Scholar 

  25. Kamei Y, Tsang CK (2003) Sargaquinoic acid promotes neurite outgrowth via protein kinase A and MAP kinase-mediated signaling pathways in PC12D cells. Int J Dev Neurosci 21:255–262

    Article  CAS  Google Scholar 

  26. Kamei Y, Sueyoshi M, Hayashi K, Terada R, Nozaki H (2009) The novel anti-Propiobacterium acnes compound, Sargafuran, found in the marine brown alga Sargassum macrocarpum. J Antibiot (Tokyo) 62:259–263

    Article  CAS  Google Scholar 

  27. Choi YK, Kin J, Lee KM, Choi YJ, Ye BR, Kim MS, Ko SG, Lee SH, Kang DH, Heo SJ (2017) Tuberatolide B suppresses cancer progression by promoting ROS–mediated inhibition of STAT3 signaling. Mar Drugs 15:55

    Article  Google Scholar 

  28. Kim EA, Kim SY, Kim J, Oh JY, Kim HS, Yoon WJ, Kang DH, Heo SJ (2019) Tuberatolide B is isolated from Sargassum macrocarpum inhibited LPS-stimulated inflammatory response via MAPKs and NF-κB signaling pathway in RAW264.7 cells and zebrafish model. J Funct Foods 52:109–115

    Article  CAS  Google Scholar 

  29. Rivera P, Podestá F, Norte M, Cataldo F, González AG (1990) New plastoquinone from the brown algae Desmarestia menziesii. Can J Chem 68:1399–1400

    Article  CAS  Google Scholar 

  30. Numata A, Kanbara S, Takahashi C, Fujiki R, Yoneda M, Usami Y, Fujita E (1992) A cytotoxic principle of the brown alga Sargassum tortile and structures of chromenes. Phytochem 31:1209–1213

    Article  CAS  Google Scholar 

  31. Davyt D, Enz W, Manta E, Navarro G, Norte M (1997) New chromenols from brown alga Desmarestia menziesii. Nat Prod Let 9:305–312

    Article  CAS  Google Scholar 

  32. Ankisetty S, Nandiraju S, Park YC, Amsler CD, McClintock JB, Baker JA, Diyabalanage TK, Pasaribu A, Singh MP, Maiese WM, Walsh RD, Zaworotko MJ, Baker BJ (2004) Chemical investigation of predator-deterred macroalgae from the Antarctic peninsula. J Nat Prod 67:1295–1302

    Article  CAS  Google Scholar 

  33. Ishitsuka M, Kusumi T, Nomura Y, Konno T, Kakisawa H (1979) New geranylgeranylbenzoquinone derivatives from Sargassum tortile. Chem Lett 8:1269–1272

    Article  Google Scholar 

  34. Brkljača R, Urban S (2015) Chemical profiling (HPLC-NMR & HPLC-MS), isolation, and identification of bioactive meroterpenoids from southern Australian marine brown algae Sargassum paradoxum. Mar Drugs 13:102–127

    Article  Google Scholar 

  35. Kusumi T, Shibata Y, Ishitsuka M, Kinoshita T, Kakisawa H (1979) Structure of new plastoquinones from the brown alga Sargassum serratifolium. Chem Lett 8:277–278

    Article  Google Scholar 

  36. Seo Y, Park KE, Kin YA, Lee HJ, Yoo JS, Ahn JW, Lee BJ (2006) Isolation of tetraprenyltoluquinols from the brown alga Sargassum thunbergii. Chem Pharm Bull 54:1730–1733

    Article  CAS  Google Scholar 

  37. Segawa M, Shirahama H (1987) New plastoquinones from brown alga Sargassum sagamianum var. yezoense. Chem Lett 15:1365–1366

    Article  Google Scholar 

  38. Kim MC, Kwon HC, Kim SN, Kim HS, Um BH (2011) Plastoquinones from Sargassum yezoense: chemical structures and effects on the activation of peroximes proliferator-activated receptor gamma. Chem Pharm Bull 59:834–838

    Article  CAS  Google Scholar 

  39. Choi H, Hwang H, Chin J, Kim E, Lee J, Nam SJ, Lee BC, Rho BJ, Kang H (2011) Tuberatolides, potent FXR antagonists from the Korea marine tunicate Botryllus tuberatus. J Nat Prod 74:90–94

    Article  CAS  Google Scholar 

  40. Horie S, Tsutsumi S, Takada Y, Kimura J (2008) Antibacterial quinone metabolites from the Brown alga, Sargassum sagamianum. Bull Chem Soc Jpn 81:1125–1130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Takahiko Ikemori, Ishikawa Prefecture Fisheries Research Center, for his assistance with the collection and classification of the alga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Sekiguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest related to this report or the study it describes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 990 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niwa, H., Kurimoto, Si., Kubota, T. et al. Macrocarquinoids A–C, new meroterpenoids from Sargassum macrocarpum. J Nat Med 75, 194–200 (2021). https://doi.org/10.1007/s11418-020-01449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-020-01449-y

Keywords

Navigation