Skip to main content
Log in

The universal pathway to commodity structure upgrading in global trade evolution

  • Regular Article
  • Published:
Journal of Economic Interaction and Coordination Aims and scope Submit manuscript

Abstract

Some scholars have proposed that economies grow by upgrading the commodities they produce and export. Product space theory holds that the export structure is determined by a country’s factor endowment and technological level, proposing the revealed comparative advantage (RCA) to analyze the specialization on commodities for countries. With the development of global trade, the network of multilateral trade relations has become increasingly hierarchical and complex. It would, therefore, be valuable to identify general patterns across countries of upgrading the commodity structure in the evolution of their participation in global trade. This paper shows that a typical pattern of change in the dominant types of foreign trade occurs when an economy has grown to a certain scale. With economic development, the advantages of high-technology commodities in trade gradually become more prominent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Balassa B (1965) Trade liberalisation and revealed comparative advantage. Manch Sch 33(2):99–123

    Article  Google Scholar 

  • Berg A, Ostry JD, Zettelmeyer J (2012) What makes growth sustained? J Dev Econ 98(2):149–166

    Article  Google Scholar 

  • Berg A, Ostry JD, Zettelmeyer J (2014) Neighbors and the evolution of the comparative advantage of nations: Evidence of international knowledge diffusion? J Int Econ 92(1):111–123

    Article  Google Scholar 

  • Brakman S, Inklaar R, Van Marrewijk C (2013) Structural change in OECD comparative advantage. J Int Trade Econ Dev 22(6):817–838

    Article  Google Scholar 

  • Desmarchelier B, Regis PJ, Salike N (2018) Product space and the development of nations: a model of product diversification. J Econ Behav Org 145(2018):34–51

    Article  Google Scholar 

  • Eichengreen B, Park D, Shin K (2013) Growth slowdowns redux: new evidence on the middle-income trap. Technical report, National Bureau of Economic Research

  • Fisher EO, Kakkar V (2004) On the evolution of comparative advantage in matching models. J Int Econ 64(1):169–193

    Article  Google Scholar 

  • French S (2017) Revealed comparative advantage: What is it good for? J Int Econ 106(2017):83–103

    Article  Google Scholar 

  • Grancay M, Grancay N, Dudas T (2015) What you export matters: Does it really? Contemp Econ 9(2):233–244

    Article  Google Scholar 

  • Grossman GM, Maggi G (2000) Diversity and trade. Am Econ Rev 90(5):1255–1275

    Article  Google Scholar 

  • Hausmann R, Hidalgo CA (2011) The network structure of economic output. J Econ Growth 16(4):309–342

    Article  Google Scholar 

  • Hidalgo CA (2021) Economic complexity theory and applications. Nat Rev Phys 3(2):92–113

    Article  Google Scholar 

  • Hidalgo CA, Hausmann R (2009) The building blocks of economic complexity. Proc Natl Acad Sci 106(26):10570–10575

    Article  Google Scholar 

  • Hidalgo CA, Klinger B, Barabási AL, Hausmann R (2007) The product space conditions the development of nations. Science 317(5837):482–487

    Article  Google Scholar 

  • Hong I, Frank MR, Rahwan I, Jung WS, Youn H (2020) The universal pathway to innovative urban economies. Sci Adv 6(34):eaba4934

  • Huang S, Gou W, Cai H, Li X, Chen Q (2020) Effects of regional trade agreement to local and global trade purity relationships. Complexity 2987217:1–6

  • Ivashko A, Babson C (2012) Using a country’s advantage in the european union: a study of evolving trade structure in Eastern Europe. Mich J Bus 5(1):47–106

  • Jarreau J, Poncet S (2012) Export sophistication and economic growth: evidence from China. J Dev Econ 97(2):281–292

    Article  Google Scholar 

  • Kabir M, Salim R, Al-Mawali N (2017) The gravity model and trade flows: recent developments in econometric modeling and empirical evidence. Econ Anal Policy 56(2017):60–71

    Article  Google Scholar 

  • Kali R, Méndez F, Reyes J (2007) Trade structure and economic growth. J Int Trade Econ Dev 16(2):245–269

    Article  Google Scholar 

  • Lall S (2000) The technological structure and performance of developing country manufactured exports, 1985–98. Oxf Dev Stud 28(3):337–369

    Article  Google Scholar 

  • Laursen K (2015) Revealed comparative advantage and the alternatives as measures of international specialization. Euras Bus Rev 5(1):99–115

    Article  Google Scholar 

  • Lectard P, Rougier E (2018) Can developing countries gain from defying comparative advantage? Distance to comparative advantage, export diversification and sophistication, and the dynamics of specialization. World Dev 102(2018):90–110

    Article  Google Scholar 

  • Levy M (2009) Gibrat’s law for (all) cities: comment. Am Econ Rev 99(4):1672–1675

  • Li X, Shen C, Cai H, Chen Q (2021) Are we in a de-globalization process? the evidence from global trade during 2007–2017. Global Chall 5(8):2000096

    Article  Google Scholar 

  • Liesner HH (1958) The European common market and British industry. Econ J 68(1):302–316

    Article  Google Scholar 

  • Malevergne Y, Pisarenko V, Sornette D (2011) Testing the pareto against the lognormal distributions with the uniformly most powerful unbiased test applied to the distribution of cities. Phys Rev E 83(3):036111

    Article  Google Scholar 

  • Meo S, Usmani A (2014) Impact of R &D expenditures on research publications, patents and high-tech exports among European countries. Eur Rev Med Pharmacol Sci 18(1):1–9

    Google Scholar 

  • Nguyen TNA, Pham THH, Vallée T (2017) Similarity in trade structure: evidence from ASEAN+ 3. J Int Trade Econ Dev 26(8):1000–1024

    Article  Google Scholar 

  • OECD (2011) Globalisation, comparative advantage and the changing dynamics of trade. Sourceoecd Employment 2011(1):351–352

    Google Scholar 

  • Rabinowitz PH, et al (1986) Minimax methods in critical point theory with applications to differential equations. Am Math Soc

  • Ricardo D (1821) On the principles of political economy. J Murray Lond

  • Sohn CH, Lee H (2010) Trade structure, FTAs, and economic growth. Rev Dev Econ 14(3):683–698

    Article  Google Scholar 

  • Tacchella A, Mazzilli D, Pietronero L (2018) A dynamical systems approach to gross domestic product forecasting. Nat Phys 14(8):861–865

    Article  Google Scholar 

  • Westbrook MD, Tybout JR (1993) Estimating returns to scale with large, imperfect panels: an application to chilean manufacturing industries. World Bank Econ Rev 7(1):85–112

    Article  Google Scholar 

  • WorldBank (2020) High technology exports (in % of manufactured goods). https://data.worldbank.org/indicator/TX.VAL.TECH.MF.ZS

  • Zhu S, Fu X (2013) Drivers of export upgrading. World Dev 51:221–233

    Article  Google Scholar 

Download references

Acknowledgements

Doctoral student Zongning Wu helped download and collect the trade flow data. Ms. Elizabeth Champion gave suggestions on writing. We appreciate the comments and helpful suggestions from Professor Yougui Wang, Zengru Di, and Jiang Zhang at Beijing Normal University. Furthermore, we would like to thank the School of Systems Science, Beijing Normal University (https://sssdata.bnu.edu.cn), for the data support.

Funding

This work was supported by the Humanities and Social Sciences Foundation of Ministry of Education of China under grant number 20YJAZH010; Major Projects of the National Social Science Foundation of China under grant number 21 &ZD086; National Natural Science Foundation of China under grant number 72073013 and 71701018); and Interdisciplinary Construction Project of Beijing Normal University.

Author information

Authors and Affiliations

Authors

Contributions

H. Cai and Q. Chen designed the study, X. Li performed the research, S. Huang analyzed the data, J. Ma verified the mathematical derivation, and X. Li and Q. Chen wrote the paper.

Corresponding authors

Correspondence to Hongbo Cai or Qinghua Chen.

Ethics declarations

Conflict of interest

No potential conflicts of interest were reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Appendix

A. Appendix

1.1 The comparative advantage function

\(F_{mn,i}\) is the trade flow from country/region m to n for commodity i. \(RCA_{mn,i}\) is the comparative advantage of commodity i in all trade from countries m to n as (Hong et al. 2020),

$$\begin{aligned} RCA_{mn,i}=\frac{F_{mn,i}}{\sum _{j}F_{mn,j}}/\frac{\sum _{p,q}F_{pq,i}}{\sum _{p,q,j}F_{pq,j}}. \end{aligned}$$

A commodity is called characteristic or significant if \(RCA_{mn,i}>1\) (Balassa 1965; Hidalgo et al. 2007; Hong et al. 2020). The trade flow \(F_{mn,i}\) is proportional to the gross national product (GDP) of the two countries as \(Y_m\) and \(Y_n\), such as

$$\begin{aligned} \begin{aligned} F_{mn,i}&=Y_{i0}Y_m^{\beta _i}Y_n^{\alpha _i}=Y_{i0}(Y_mY_n)^{\beta _i}Y_n^{(\alpha _i-\beta _i)}\\&=Y_{i0}(N_{mn})^{\beta _i}Y_n^{(\alpha _i-\beta _i)}. \end{aligned} \end{aligned}$$

Then, we obtain

$$\begin{aligned} \begin{aligned} RCA_{mn,i}&\sim \frac{Y_{i0}(N_{mn})^{\beta _i}Y_n^{(\alpha _i-\beta _i)}}{\sum _{j}F_{mn,j}\sum _{p,q}Y_{i0}Y_p^{\beta _i}Y_q^{\alpha _i}} \\&=\frac{(N_{mn})^{\beta _i}Y_n^{(\alpha _i-\beta _i)}}{\sum _{j}F_{mn,j}\sum _{p,q}Y_p^{\beta _i}Y_q^{\alpha _i}}. \\ \end{aligned} \end{aligned}$$

For most industries, \(\beta _i>(\alpha _i-\beta _i)\). For most countries, \(N_{mn}=(Y_mY_n)>>Y_n\), and the change in Y is relatively small. Then,

$$\begin{aligned} RCA_{mn,i}\sim \frac{(N_{mn})^{\beta _i}}{\sum _{j}F_{mn,j}\sum _{p,q}Y_p^{\beta _i}Y_q^{\alpha _i}}. \end{aligned}$$
Fig. 6
figure 6

a The lognormal distribution of \(N_{mn}\) in 2015. b In the area of relatively small or large \({\varvec{N}}\), the distribution function is linear under double logarithm coordinates. Here black dots are empirical data, and red or blue ones are fitting curves (color figure online)

Figure 6 shows the lognormal distribution of \(N_{mn}\) in 2015, which is consistent with the conclusion of some researchers (Hausmann and Hidalgo 2011). For \( {\varvec{N}}\in [10^{16},10^{19}]\) and \( {\varvec{N}}\in [10^{23},10^{26}]\), we can approximately define that \(P( {\varvec{N}})\propto {\varvec{N}}^{-\gamma }\). Based on \( {\varvec{N}}^{ \varvec{\beta }}\propto P( {\varvec{N}}) {\varvec{N}}^{ \varvec{\beta }}\propto {\varvec{N}}^{-\gamma } {\varvec{N}}^{ \varvec{\beta }}\), then

$$\begin{aligned} \sum _{pq} Y_{p}^{\beta _i}Y_q^{\alpha _i}\simeq & {} \int _{N_{\mathrm{min}}}^{N_{\mathrm{max}}} P( {\varvec{N}}) {\varvec{N}}^{ \varvec{\beta }} {\varvec{Y}}^{( \varvec{\alpha }- \varvec{\beta })}\mathrm{d} {\varvec{N}}\\\simeq & {} \int _{N_{\mathrm{min}}}^{N_{\mathrm{max}}} {\varvec{N}}^{ \varvec{\beta }-\gamma } {\varvec{Y}}^{( \varvec{\alpha }- \varvec{\beta })}\mathrm{d} {\varvec{N}}\\\simeq & {} \frac{N_{\mathrm{max}}^{( \varvec{\beta } -\gamma +1)}Y_{\mathrm{max}}^{( \varvec{\alpha }- \varvec{\beta })}-N_{\mathrm{min}}^{( \varvec{\beta }-\gamma +1)}Y_{\mathrm{min}}^{( \varvec{\alpha }- \varvec{\beta })}}{ \varvec{\beta } -\gamma +1}.\\ \end{aligned}$$

Based on the trade gravity model, this paper ignores the influence of geographical distance and simplifies the parameters. Here is the hypothesis of \(\sum _j F_{mn,j}\sim N_{mn}\), then

$$\begin{aligned} \begin{aligned} \varvec{RCA}&\sim {\varvec{N}}^{ \varvec{\beta }-1}\frac{ \varvec{\beta } -\gamma +1}{N_{\mathrm{max}}^{ \varvec{\beta } -\gamma +1}Y_{\mathrm{max}}^{ \varvec{\alpha }- \varvec{\beta }}-N_{\mathrm{min}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{min}}^{ \varvec{\alpha }- \varvec{\beta }}}\\&= {\varvec{N}}^{ \varvec{\beta }-1}F( \varvec{\alpha }, \varvec{\beta }). \end{aligned} \end{aligned}$$
(5)

1.2 Changes in comparative advantage

  • Changes with \( {\varvec{N}}\).

    $$\begin{aligned} \begin{aligned} \frac{\partial \varvec{RCA}}{\partial {\varvec{N}}}\sim ( \varvec{\beta }-1) {\varvec{N}}^{ \varvec{\beta }-2}F( \varvec{\alpha }, \varvec{\beta }). \end{aligned} \end{aligned}$$
    (6)

    \( \varvec{\beta }^*=1\). when \( \varvec{\beta }>1\), \(\frac{\partial \varvec{RCA}}{\partial {\varvec{N}}}>0\); \( \varvec{\beta }<1\), \(\frac{\partial \varvec{RCA}}{\partial {\varvec{N}}}<0\); and \( \varvec{\beta }=1\), \(\frac{\partial \varvec{RCA}}{\partial {\varvec{N}}}=0\).

  • Changes with \( \varvec{\alpha }\).

    $$\begin{aligned} \frac{\partial \varvec{RCA}}{\partial \varvec{\alpha }}\sim -\frac{ {\varvec{N}}^{ \varvec{\beta }-1}F^2( \varvec{\alpha }, \varvec{\beta })}{ \varvec{\beta }-\gamma +1}C( \varvec{\alpha }, \varvec{\beta }), \end{aligned}$$
    (7)
    $$\begin{aligned} \begin{aligned} C( \varvec{\alpha }, \varvec{\beta })=\,&N_{\mathrm{max}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{max}}^{( \varvec{\alpha }- \varvec{\beta })}\log Y_{\mathrm{max}}\\&-N_{\mathrm{min}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{min}}^{( \varvec{\alpha }- \varvec{\beta })}\log Y_{\mathrm{min}}. \end{aligned} \end{aligned}$$

    Here \(\varvec{\alpha }^*\) cannot fall within the range obtained by empirical data. Therefore, in the later analysis, we assume that \(\varvec{\alpha }\) is the average value of \(\alpha _i\).

  • Changes with \( \varvec{\beta }\).

    $$\begin{aligned} \begin{aligned}&\frac{\partial \varvec{RCA}}{\partial \varvec{\beta }}\sim \frac{F( \varvec{\alpha }, \varvec{\beta }) {\varvec{N}}^{ \varvec{\beta }-1}}{ \varvec{\beta }- \varvec{\gamma }+1}\\&\times [( \varvec{\beta }- \varvec{\gamma }+1)\log {\varvec{N}}+1-F( \varvec{\alpha }, \varvec{\beta })D( \varvec{\alpha }, \varvec{\beta })],\\ \end{aligned} \end{aligned}$$
    (8)
    $$\begin{aligned} \begin{aligned} D( \varvec{\alpha }, \varvec{\beta })&\simeq N_{\mathrm{max}}^{( \varvec{\beta }-\gamma +1)}Y_{\mathrm{max}}^{ \varvec{\alpha }- \varvec{\beta }}\log N_{\mathrm{max}}\\&-N_{\mathrm{min}}^{( \varvec{\beta }-\gamma +1)}Y_{\mathrm{min}}^{ \varvec{\alpha }- \varvec{\beta }}\log N_{\mathrm{min}}. \\ \end{aligned} \end{aligned}$$

    \( {\varvec{N}}^*=10^{(\frac{F( \varvec{\alpha }, \varvec{\beta })D( \varvec{\alpha }, \varvec{\beta })-1}{ \varvec{\beta }-\gamma +1})}\) In 2015, for the first critical point, \(Y_{\mathrm{max}}\approx 10^{8.5}\), \(Y_{\mathrm{min}}\approx 10^{7}\), and \(N_{\mathrm{max}}\approx 10^{19}\), \(N_{\mathrm{min}}\approx 10^{16}\), \(\gamma =0.234\), when \( \varvec{\beta }^*= 1\), and \( \varvec{\alpha }=0.570\), \( {\varvec{N}}_1^*=10^{18.4}\). When \( {\varvec{N}}> {\varvec{N}}_1^*\), \(\frac{\partial \varvec{RCA}}{\partial \varvec{\beta }}>0\); \( {\varvec{N}}< {\varvec{N}}_1^*\), \(\frac{\partial \varvec{RCA}}{\partial \varvec{\beta }}<0\); \( {\varvec{N}}= {\varvec{N}}_1^*\), \(\frac{\partial \varvec{RCA}}{\partial \varvec{\beta }}=0\). For the second critical point, \(Y_{\mathrm{max}}\approx 10^{13}\), \(Y_{\mathrm{min}}\approx 10^{11.5}\),\(N_{\mathrm{max}}\approx 10^{26}\), \(N_{\mathrm{min}}\approx 10^{23}\), \(\gamma =1.516\), when \( \varvec{\beta }^*= 1\), \( \varvec{\alpha }=0.570\), and \( {\varvec{N}}_2^*=10^{24.8}\). When \( {\varvec{N}}> {\varvec{N}}_2^*\), \(\frac{\partial \varvec{RCA}}{\partial \varvec{\beta }}>0\); \( {\varvec{N}}< {\varvec{N}}_2^*\), \(\frac{\partial \varvec{RCA}}{\partial \varvec{\beta }}<0\); \( {\varvec{N}}= {\varvec{N}}_2^*\), \(\frac{\partial \varvec{RCA}}{\partial \varvec{\beta }}=0\).

1.3 Analysis of critical points

Due to the complexity of \(\varvec{\alpha }\), we mainly study the co-evolution of \( \varvec{\beta }\) and \( {\varvec{N}}\) from the perspective of export countries. (\( \varvec{\beta }^{\mathrm{{*}}}=1, \varvec{N_1}^{\mathrm{{*}}}=10^{18.4} \)) and (\( \varvec{\beta ^{\mathrm{{*}}}}=1, \varvec{N_2}^{\mathrm{{*}}}=10^{24.8}\)) are the critical points.

$$\begin{aligned} \begin{aligned} \frac{\partial ^2 \varvec{RCA}}{\partial {\varvec{N}}^2}=\,\,&( \varvec{\beta }-1)( \varvec{\beta }-2) {\varvec{N}}^{ \varvec{\beta }-3}\frac{ \varvec{\beta }-\gamma +1}{N_{\mathrm{max}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{max}}^{\ \varvec{\alpha }- \varvec{\beta }}-N_{\mathrm{min}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{min}}^{\ \varvec{\alpha }- \varvec{\beta }}}\\ \frac{\partial ^2 \varvec{RCA}}{\partial {\varvec{N}} \partial \varvec{\beta }}\simeq&\,\,\frac{( \varvec{\beta }-1)F( \varvec{\alpha }, \varvec{\beta }) {\varvec{N}}^{ \varvec{\beta }-2}}{ \varvec{\beta }-\gamma +1}(( \varvec{\beta }-\gamma +1)\log {\varvec{N}}+1\\&-F( \varvec{\alpha }, \varvec{\beta })D( \varvec{\alpha }, \varvec{\beta }))+N^{ \varvec{\beta }-2}F( \varvec{\alpha }, \varvec{\beta })\\ \frac{\partial ^2 \varvec{RCA}}{\partial \varvec{\beta } \partial {\varvec{N}}}=\,\,&\frac{ {\varvec{N}}^{ \varvec{\beta }-2}}{N_{\mathrm{max}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{max}}^{ \varvec{\alpha }- \varvec{\beta }}-N_{\mathrm{min}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{min}}^{ \varvec{\alpha }- \varvec{\beta }}}[( \varvec{\beta }-1)( \varvec{\beta }-\gamma +1)\log {\varvec{N}}\\&+(2 \varvec{\beta }-\gamma )-( \varvec{\beta }-1)F( \varvec{\alpha }, \varvec{\beta })D( \varvec{\alpha }, \varvec{\beta }))]\\ \frac{\partial ^2 \varvec{RCA}}{\partial \varvec{\beta }^2}=\,&\left[ \frac{ {\varvec{N}}^{ \varvec{\beta }-1}(\log {\varvec{N}}(N_{\mathrm{max}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{max}}^{ \varvec{\alpha }- \varvec{\beta }}-N_{\mathrm{min}}^{ \varvec{\beta }- \gamma +1}Y_{\mathrm{min}}^{ \varvec{\alpha }- \varvec{\beta }})-G( \varvec{\alpha }, \varvec{\beta }))}{(N_{\mathrm{max}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{max}}^{ \varvec{\alpha }- \varvec{\beta }}-N_{\mathrm{min}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{min}}^{ \varvec{\alpha }- \varvec{\beta }})}\right] \\&\times [\log {\varvec{N}}+\frac{D( \varvec{\alpha }, \varvec{\beta })(( \varvec{\beta }-\gamma +1)(\log ( \varvec{\beta }-\gamma +1)+\log ( \varvec{\alpha }- \varvec{\beta })))}{N_{\mathrm{max}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{max}}^{ \varvec{\alpha }- \varvec{\beta }}-N_{\mathrm{min}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{min}}^{ \varvec{\alpha }- \varvec{\beta }}}\\&-F( \varvec{\alpha }, \varvec{\beta })(N_{\mathrm{max}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{max}}^{ \varvec{\alpha }- \varvec{\beta }}(\log N_{\mathrm{max}}+\log Y_{\mathrm{max}}))\\&+F( \varvec{\alpha }, \varvec{\beta })(N_{\mathrm{min}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{min}}^{ \varvec{\alpha }- \varvec{\beta }}(\log N_{\mathrm{min}}+\log Y_{\mathrm{min}}))]\\ G( \varvec{\alpha }, \varvec{\beta })=\,&N_{\mathrm{max}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{max}}^{ \varvec{\alpha }- \varvec{\beta }}(\log N_{\mathrm{max}}+\log Y_{\mathrm{max}})\\&-N_{\mathrm{min}}^{ \varvec{\beta }-\gamma +1}Y_{\mathrm{min}}^{ \varvec{\alpha }- \varvec{\beta }}(\log N_{\mathrm{min}}+\log Y_{\mathrm{min}}) \end{aligned} \end{aligned}$$

This is a saddle point since the Hessian matrix is an HRM with one positive eigenvalue and one negative eigenvalue. Therefore, (\( \varvec{\beta }^{\mathrm{{*}}}=1, \varvec{N_1}^{\mathrm{{*}}}=10^{18.4} \)) and (\( \varvec{\beta }^{\mathrm{{*}}}=1, \varvec{N_2}^{\mathrm{{*}}}=10^{24.8} \)) are minimums in one direction but maximums for the other direction with

$$\begin{aligned} HMR=\begin{bmatrix} \frac{\partial ^2 \varvec{RCA}}{\partial {\varvec{N}}^2}=0 &{} \frac{\partial ^2 \varvec{RCA}}{\partial {\varvec{N}} \partial \varvec{\beta }}>0\\ \frac{\partial ^2 \varvec{RCA}}{\partial \varvec{\beta } \partial {\varvec{N}}}>0 &{} \frac{\partial ^2 \varvec{RCA}}{\partial \varvec{\beta }^2}<0\\ \end{bmatrix} \end{aligned}$$

Figure 7 shows the two saddle points with (\( \varvec{\beta }^{\mathrm{{*}}}=1, \varvec{N_1}^{\mathrm{{*}}}=10^{18.4}\)) in (a) and (\( \varvec{\beta }^{\mathrm{{*}}}=1, \varvec{N_2}^{\mathrm{{*}}}=10^{24.8}\)) in (b).

Fig. 7
figure 7

Two saddle points in 2015, with \(\varvec{RCA}\) are minimums in one direction but maximums in the other direction

1.4 Relationship between \(\varvec{RCA}\) and trade attractiveness

From 1995 to 2015, for commodities, the relationship between \(\varvec{RCA}\) and trade attractiveness \({\varvec{N}}\) showed a relatively stable law as below (Fig. 8).

Fig. 8
figure 8

Relationship between \(\varvec{RCA}\) and trade attractiveness \({\varvec{N}}\) during 1995–2015

1.5 Trade structure upgrading and GDP

Figure 5c shows the linear relationship between export country’s trade structure and GDP \(\log Y_m\), and we try to analyze the principle by derivation, for export country m, based on \(N_{mn}>>Y_n\) and \(\beta _i>\alpha _i-\beta _i\),

$$\begin{aligned} \begin{aligned} F_{mn,i}&=Y_{i0}Y_m^{\beta _i}Y_n^{\alpha _i}=Y_{i0}(N_{mn}^{\beta _i})Y_n^{(\alpha _i-\beta _i)}\\&\approx Y'_{i0}(N_{mn}^{\beta _i})\\ \Rightarrow \beta _i&\sim \frac{\log (F_{mn,i})}{\log N_{mn}}\\ \Rightarrow \frac{<\beta _{\mathrm{export}}>_m}{<\beta _{\mathrm{import}}>_m}&=\sum _{i\in i_s}\sum _n \frac{\log (F_{mn,i})}{\log N_{mn}}/ \sum _{j\in j_s}\sum _n \frac{\log (F_{nm,j})}{\log N_{mn}},\\ \end{aligned} \end{aligned}$$

where \(i_s\) is the collection of commodities which are significant in the trade from m to n, with \(RCA_{mn,i}>\)1; and \(j_s\) is the collection of commodities which are significant in the trade from n to m, with \(RCA_{nm,j}>\)1.

$$\begin{aligned} \frac{<\beta _{\mathrm{export}}>_m}{<\beta _{\mathrm{import}}>_m}&=\sum _{i\in i_s}\sum _n \frac{\log (F_{mn,i})}{\log N_{mn}}/ \sum _{j\in j_s}\sum _n \frac{\log (F_{nm,j})}{\log N_{mn}}\\&\sim \sum _{i\in i_s}\sum _n \frac{\log (Y_m^{\beta _i} Y_n^{\alpha _i})}{\log N_{mn}}/ \sum _{j\in j_s}\sum _n \frac{\log (Y_n^{\beta _j} Y_m^{\alpha _j})}{\log N_{mn}}\\&=\sum _{i\in i_s}\sum _n \frac{\log (Y_m^{\alpha _i} Y_n^{\alpha _i}Y_m^{\beta _i-\alpha _i})}{\log N_{mn}}/ \sum _{j\in j_s}\sum _n \frac{\log (Y_n^{\alpha _j} Y_m^{\alpha _j}Y_n^{\beta _j-\alpha _j})}{\log N_{mn}}\\&=\sum _{i\in i_s}\sum _n (\alpha _i+\frac{(\beta _i-\alpha _i)\log Y_m}{\log N_{mn}})/ \sum _{j\in j_s}\sum _n (\alpha _j+\frac{(\beta _j-\alpha _j)\log Y_n}{\log N_{mn}})\\&=\frac{n\sum _{i\in i_s}\alpha _i+\log Y_m\sum _{i\in i_s}\sum _n\frac{\beta _i-\alpha _i}{\log N_{mn}}}{n\sum _{j\in j_s}\alpha _j+\sum _{j\in j_s}\sum _n\frac{(\beta _j-\alpha _j)\log Y_n}{\log N_{mn}}}. \end{aligned}$$

\(N_{mn}>>Y_n\) and we suppose that \(\frac{\log Y_n}{\log N_{mn}} \approx c_{N}\). The variation range of \(\varvec{\alpha }\) and \(\varvec{\beta }\) is also relatively small, then,

$$\begin{aligned} \begin{aligned} \frac{<\beta _{\mathrm{export}}>_m}{<\beta _{\mathrm{import}}>_m}&\sim \frac{n\sum _{i\in i_s}\alpha _i+\log Y_m\sum _{i\in i_s}\sum _n\frac{\beta _i-\alpha _i}{\log N_{mn}}}{n\sum _{j\in j_s}\alpha _j+c_N}\\&=\frac{c_{i_s}+c'_{i_s}\log Y_m}{c'_{j_s}}=\frac{c_{i_s}}{c_{j_s}}+\frac{c'_{i_s}}{c_{j_s}}\log Y_m. \end{aligned} \end{aligned}$$
(9)

\(c_N, c_{i_s},c'_{i_s},c_{j_s}\) can be approximated as constants. For exporters, equation (9) shows the approximate linear relation of trade structure upgrading (\(\frac{<\beta _{\mathrm{export}}>_m}{<\beta _{\mathrm{import}}>_m}\)) and its GDP \(\log Y_m\), which is consistent with the statistical results of the empirical data in Fig. 5c.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Cai, H., Huang, S. et al. The universal pathway to commodity structure upgrading in global trade evolution. J Econ Interact Coord 17, 1047–1067 (2022). https://doi.org/10.1007/s11403-022-00360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11403-022-00360-x

Keywords

Navigation