Skip to main content
Log in

Pressure boundary conditions for blood flows

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Simulations of blood flows in arteries require numerical solutions of fluidstructure interactions involving Navier-Stokes equations coupled with large displacement visco-elasticity for the vessels.

Among the various simplifications which have been proposed, the surface pressure model leads to a hierarchy of simpler models including one that involves only the pressure. The model exhibits fundamental frequencies which can be computed and compared with the pulse. Yet unconditionally stable time discretizations can be constructed by combining implicit time schemes with Galerkin-characteristic discretization of the convection terms in the Navier-Stokes equations. Such problems with prescribed pressure on the walls will be shown to be efficient and accurate as an approximation of the full fluid structure interaction problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Begue, C., Conca, C., Murat, F. and Pironneau O., Les equations de Stokes et de Navier-Stokes avec conditions aux limites sur la pression, Nonlinear Partial Differential Equations and Their Applications, H. Brezis, J. Lions (eds.), College de France, Vol. IX, Pitman, RNM Longman, Boston, 1988, 179–264.

  2. Boffi, D. and Gastaldi, L., A finite element approach for the immersed boundary method, Comput. Struct., 81, 2003, 491–501.

    Article  MathSciNet  Google Scholar 

  3. Costabel, M. and Dauge, M., Maxwell and Lamé eigenvalues on polyhedral domains, Université de Rennes I, 2002, preprint.

    Google Scholar 

  4. Costabel, M. and Dauge, M., Singularities of electromagnetic fields in polyhedral domains, Université de Rennes, 1, 1997, preprint 97-19. http://www.maths.univ-rennes1.fr/~dauge/

    Google Scholar 

  5. Cottet, G. H., Maitre, E. and Milcent, T., Eulerian formulation and level set models for incompressible fluid-structure interaction, ESAIM: M2AN, 42, 2008, 471–492.

    Article  MathSciNet  MATH  Google Scholar 

  6. Crosetto, P., Deparis, S., Fourestey, G. and Quarteroni, A., Parallel algorithms for fluid-structure interaction problems in haemodynamics, SIAM J. Sci. Comput., 33(4), 2011, 1598–1622.

    Article  MathSciNet  MATH  Google Scholar 

  7. Decoene, A. and Maury, B., Moving meshes with freefem++, J. Numer. Math., 20(3–4), 2013, 195–214.

    MathSciNet  Google Scholar 

  8. De Hart, J., Peters, G., Schreurs, P. and Baaijens, F., A three-dimensional computational analysis of fluid-structure interaction in the aortic value, J. Biomechanics, 36, 2003, 103–112.

    Article  Google Scholar 

  9. Deparis, S., Fernandez, M. A. and Formaggia, L., Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, ESAIM: M2AN, 37(4), 2003, 601–616.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, F. Q., Li, X. D. and Lin, D. K., Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the perfectly matched layer technique, J. Comp. Physics, 227, 2008, 4398–4424.

    Article  MathSciNet  MATH  Google Scholar 

  11. Fernandez, M., Incremental displacement-correction schemes for incompressible fluid-structure interaction, Numer. Math., 123, 2013, 21–65.

    Article  MathSciNet  MATH  Google Scholar 

  12. Formaggia, L., Gerbeau, J. F., Nobile, F. and Quarteroni, A., On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comput. Methods Appl. Mech. Engrg., 191, 2001, 561–582.

    Article  MathSciNet  MATH  Google Scholar 

  13. Formaggia, L., Quarteroni, A. and Veneziani, A., Cardiovasuclar Mathematics, Springer MS&A Series, Springer-Verlag, New York, 2009.

    Google Scholar 

  14. Girault, V. and Glowinski, R., Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan Journal of Ind. and Applied Math., 12(3), 1995, 487–514.

    Article  MathSciNet  MATH  Google Scholar 

  15. Girault, V. and Raviart, P. A., Finite Element Method for Navier-Stokes Equations, SCM 5, Springer-Verlag, Berlin, Heidelberg, NewYork, 1986.

    Book  Google Scholar 

  16. Gonzalez, O. and Simo, J. C., On the stability of symplectic and energy-momentum algorithms for nonlinear Hamiltonian systems with symmetry, Comput. Methods Appl. Mech. Engrg., 134, 1996, 197–222.

    Article  MathSciNet  MATH  Google Scholar 

  17. Gonzalez, O., Exact energy and momentum conserving algorithms for general models in nonlinear elasticity, Comput. Methods Appl. Mech. Engrg., 190, 2000, 1763–1783.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gostaf, K., Pironneau O. and Roux, F. X., Finite element analysis of multi-component assemblies: CADbased domain decomposition, DDM 14 Proc., to appear.

  19. Marshall, I., Computational simulations and experimental studies of 3d phase-contrast imaging of fluid flow in carotid bifurcation geometries, J. Magnetic Resonance Imaging, 31, 2010, 928–934.

    Article  Google Scholar 

  20. Steinman, D. A., Poepping, T. L., Tambasco, M., et al., Flow patterns at the stenosed carotid bifurcation: Effect of concentric versus eccentric stenosis, Annal. Biomedical Engineering, 28, 2000, 415–423.

    Article  Google Scholar 

  21. Guermond, J. L., Minev, P. and Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195(44–47), 2006, 6011–6045.

    Article  MathSciNet  MATH  Google Scholar 

  22. Heil, M., Hazel, A. and Boyle, J., Solvers for large-displacement fluid-structure interaction problems: Segregated versus monolithic approaches, Comput. Mech., 43, 2008, 91–101.

    Article  MATH  Google Scholar 

  23. Le Tallec, P., Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Engrg., 190, 2001, 3039–3067.

    Article  MATH  Google Scholar 

  24. Nobile, F. and Vergara, C., An effective fluid-structure interaction formulation for vascular dynamics by generalized robin conditions, SIAM J. Sci. Comp., 30(2), 2008, 731–763.

    Article  MathSciNet  MATH  Google Scholar 

  25. Pares, C., Un traitement faible par élément finis de la condition de glissement sur une paroi pour les équations de Navier-Stokes, C. R. Acad. Sci. Paris Sér. I Math., 307, 10, 1–106, 1988.

    MathSciNet  MATH  Google Scholar 

  26. Peskin, C., The immersed boundary method, Acta Numerica, 11, 2002, 479–517.

    Article  MathSciNet  MATH  Google Scholar 

  27. Peskin, C. and McQueen, D., A three dimensional computational method for blood flow in the hearth-I, Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys., 81, 1989, 372–405.

    Article  MathSciNet  MATH  Google Scholar 

  28. Pironneau, O., Finite Element Methods for Fluids, Wiley, New York, 1989.

    Google Scholar 

  29. Pironneau, O., Conditions aux limites sur la pression pour les équations de Stokes et de Navier-Stokes, C. R. Acad. Sci. Paris Sér. I Math., 303(9), 1986, 403–406.

    MathSciNet  MATH  Google Scholar 

  30. Pironneau, O. and Tabata, M., Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type, Int. J. Numer. Meth. Fluids, 64, 2010, 1240–1253.

    Article  MathSciNet  MATH  Google Scholar 

  31. Rannacher, R., Incompressible Viscous Flow, Encyclopedia Mecanicae, E. Stein (ed.), Wiley, New York, 2004.

  32. Rappaz, J. and Flotron, S., Numerical conservation schemes for convection-diffusion equations, to appear.

  33. Si, Z. Y., Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier-Stokes problems, Numer. Algor., 59, 2012, 271–300.

    Article  MathSciNet  MATH  Google Scholar 

  34. Tambaca, J., Canic, S., Kosor, M., et al., Mechanical Behavior of Fully Expanded Commercially Available Endovascular Coronary Stents, Tex Heart Inst. J., 38(5), 491–501, 2011.

    Google Scholar 

  35. Thiriet, M., Biomathematical and biomechanical modeling of the circulatory and ventilatory systems, Control of Cell Fate in the Circulatory and Ventilatory Systems, Vol. 2, Math and Biological Modeling, Springer-Verlag, New York, 2011.

  36. Usabiaga, F., Bell, J., Buscalioni, R., et al., Staggered schemes for fluctuating hydrodynamics, Multiscale Model Sim., 10, 2012, 1369–1408.

    Article  MATH  Google Scholar 

  37. Vignon-Clementel, I., Figueroa, A., Jansen, K. and Taylor, C. A., Outflow boundary conditions for threedimensional finite element modeling of blood flow and pressure in arteries, Comput. Methods Appl. Mech. Engrg., 195, 2006, 3776–3796.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill P. Gostaf.

Additional information

In Honor of the Scientific Contributions of Professor Luc Tartar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gostaf, K.P., Pironneau, O. Pressure boundary conditions for blood flows. Chin. Ann. Math. Ser. B 36, 829–842 (2015). https://doi.org/10.1007/s11401-015-0983-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-015-0983-8

Keywords

2000 MR Subject Classification

Navigation