Skip to main content
Log in

Delay and Capacity Trade-offs in Mobile Wireless Networks with Infrastructure Support

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, we investigate the trade-offs between delay and capacity in mobile wireless networks with infrastructure support. We consider three different mobility models, independent and identically distributed (i.i.d) mobility model, random walk mobility model with constant speed and Lévy flight mobility model. For i.i.d mobility model and random walk mobility model with the speed \( \Theta \left( {\frac{1}{{\sqrt {n} }}} \right) \), we get the theoretical results of the average packet delay when capacity is Θ(1), \( \Theta \left( {\frac{1}{{\sqrt {n} }}} \right) \) individually, where n is the number of nodes. We find that the optimal average packet delay is achieved when capacity \( \lambda (n) < \frac{1}{{2 \cdot n \cdot \log \left( {\frac{1}{{1 - {e^{ - \frac{K}{n}}}}} + 1} \right)}} \), where K is the number of gateways. It is proved that average packet delay D(n) divided by capacity λ(n) is bounded below by \( \frac{n}{{K \cdot W}} \). When \( \omega \left( {\sqrt {n} } \right) \leqslant K < n \), the critical average delay for capacity compared with static hybrid wireless networks is \( \Theta \left( {\frac{{{K^2}}}{n}} \right) \). Lévy flight mobility model is based on human mobility and is more sophisticated. For the model with parameter α, it is found that \( \frac{{D(n)}}{{\lambda (n)}} > O\left( {{n^{\frac{{\left( {1 - n} \right) \cdot \left( {\alpha + 1} \right)}}{2}}}\ln n} \right) \) when K = O(n n) (0 ≤ η < 1). We also prove that when \( \omega \left( {\sqrt {n} } \right) \leqslant K < n \), the critical average delay is \( \Theta \left( {{n^{\frac{{\alpha - 1}}{2}}} \cdot K} \right) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu C, Wu J. Scalable routing in cyclic mobile networks. IEEE Transactions on Parallel and Distributed Systems, 2009, 20(9): 1325–1338.

    Article  Google Scholar 

  2. Chen X, Shen J, Groves T, Wu J. Probability delegation forwarding in delay tolerant networks. In Proc. the 18th ICCCN, San Francisco, USA, Aug. 3-6, 2009, pp.1–6.

  3. Zhu J Q, Liu M, Cao J N, Chen G H, Gong H G, Xu F L. CED: A community-based event delivery protocol in publish/subscribe systems for delay tolerant sensor network (DTSN). In Proc. ICPP, Vienna, Austria, Sept. 22-25, 2009, pp.58–65.

  4. Han B, Hui P, Kumar V S A, Marathe M V, Pei G H, Srinivasan A. Cellular traffic offloading through opportunistic communications: A case study. In Proc. the 5th CHANTS, Chicago, USA, Sept. 24, 2010, pp.31–38.

  5. Lee K, Rhee I, Lee J, Yi Y, Chong S. Mobile data offloading: How much can WiFi deliver? In Proc. CoNEXT, Philadelphia, USA, Nov. 30-Dec. 3, 2010, pp.425–426.

  6. Huang W T, Wang X B, Zhang Q. Capacity scaling in mobile wireless ad hoc network with infrastructure support. In Proc. the 30th ICDCS, Genoa, Italy, June 21-25, 2010, pp.848–857.

  7. Sharma G, Mazumdar R, Shroff N. Delay and capacity trade-offs in mobile ad hoc networks: A global perspective. IEEE/ACM Trans. Networking, 2007, 15(5): 981–992.

    Article  Google Scholar 

  8. Rhee I, Shin M, Hong S, Lee K, Chong S. On the levy-walk nature of human mobility. IEEE/ACM Transactions on Networking, 2011, 19(3): 630–643.

    Article  Google Scholar 

  9. Guptu P, Kumar P R. The capacity of wireless networks. IEEE Trans. Information Theory, 2000, 46(2): 388–404.

    Article  Google Scholar 

  10. Grossglauser M, Tse D N C. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking, 2002, 10(4): 477–486.

    Article  Google Scholar 

  11. Bansal N, Liu Z. Capacity, delay and mobility in wireless adhoc networks. In Proc. INFOCOM, San Francisco, USA, Mar. 30-April 4, 2003, pp.1553–1563.

  12. Neely M J, Modiano E. Capacity and delay tradeoffs for ad hoc mobile networks. IEEE Transactions on Information Theory, 2005, 51(6): 1917–1937.

    Article  MathSciNet  Google Scholar 

  13. Toumpis S, Goldsmith A J. Large wireless networks under fading, mobility, and delay constraints. In Proc. INFOCOM, Hong Kong, China, Mar. 7-11, 2004, pp.609–619.

  14. Lin X J, Shrott N. Towards achieving the maximum capacity in large mobile wireless networks under delay constraints. J. Commun. and Networks, 2004, 6(4): 352–361.

    Google Scholar 

  15. Liu J J, Jiang X H, Nishiyama H, Kato N. Delay and capacity in ad hoc mobile networks with f-cast relay algorithms. IEEE Transactions on Wireless Communications, 2011, 10(8): 2738–2751.

    Article  Google Scholar 

  16. Gamal A, Mammen J, Probhakar B, Shah D. Throughput-delay trade-off in wireless networks. In Proc. INFOCOM, Hong Kong, China, Mar. 7-11, 2004, pp.464–475.

  17. Lin X J, Sharma G, Mazumdar R R, Shroff N B. Degenerate delay-capacity tradeoffs in ad-hoc networks with Brownian mobility. IEEE Transactions on Information Theory, 2006, 52(6): 2777–2784.

    Article  MathSciNet  Google Scholar 

  18. El Gamal A, Mammen J, Prabhakar B, Shah D. Optimal throughput-delay scaling in wireless networks – part I: The fluid model. IEEE Transactions on Information Theory, 2006, 52(6): 2568–2592.

    Article  Google Scholar 

  19. El Gamal A, Mammen J, Prabhakar B, Shah D. Optimal throughput-delay scaling in wireless networks – part II: Constant-size packets. IEEE Transactions on Information Theory, 2006, 52(11): 5111–5116.

    Article  Google Scholar 

  20. Mammen J, Shah D. Throughput and delay in random wireless networks with restricted mobility. IEEE Transactions on Information Theory, 2007, 53(3): 1108–1116.

    Article  MathSciNet  Google Scholar 

  21. Ying L, Yang S C, Srikant R. Optimal delay – throughput trade-offs in mobile ad hoc networks. IEEE Transactions on Information Theory, 2008, 54(9): 4119–4143.

    Article  MathSciNet  Google Scholar 

  22. Garetto M, Giaccone P, Leonardi E. Capacity scaling in ad hoc networks with heterogeneous mobile nodes: The supercritical regime. IEEE/ACM Transactions on Networking, 2009, 17(5): 1522–1535.

    Article  Google Scholar 

  23. Garetto M, Giaccone P, Leonardi E. Capacity scaling in ad hoc networks with heterogeneous mobile nodes: The subcritical regime. IEEE/ACM Transactions on Networking, 2009, 17(6): 1888–1901.

    Article  Google Scholar 

  24. Garetto M, Leonardi E. Restricted mobility improves delay-throughput trade-offs in mobile ad hoc networks. IEEE Transactions on Information Theory, 2010, 56(10): 5016–5029.

    Article  MathSciNet  Google Scholar 

  25. Tournoux P U, Leguay J, Benbadis F, Conan V, de Amorim M D, Whitbeck J. The accordion phenomenon: Analysis, characterization, and impact on DTN routing. In Proc. INFOCOM, Rio de Janeiro, Brazil, April 19-25, 2009, pp.1116–1124.

  26. Ciullo D, Martina V, Garetto M, Leonardi E. Impact of correlated mobility on delay-throughput performance in mobile ad-hoc networks. In Proc. INFOCOM, San Diego, USA, Mar. 15-19, 2010, pp.1–9.

  27. Wang C, Li X Y, Tang S J, Jiang C J, Liu Y H. Capacity and delay in mobile ad hoc networks under Gaussian channel model. ACM SIGMOBILE Mob. Comput. Commun. Rev., 2010, 14(3): 22–24.

    Article  Google Scholar 

  28. Lee Y, Kim Y, Chong S, Rhee I, Yi Y. Delay-capacity trade-offs for mobile networks with lévy walks and lévy flights. In Proc. INFOCOM, Shanghai, China, April 10-15, 2011, pp.3128–3136.

  29. Li X Y. Multicast capacity of wireless ad hoc networks. IEEE/ACM Trans. Networking, 2009, 17(3): 950–961.

    Article  Google Scholar 

  30. Keshavarz-Haddad A, Ribeiro V, Riedi R. Broadcast capacity in multihop wireless networks. In Proc. the 12th MobiCom, Los Angeles, USA, Sept. 24-29, 2006, pp.239–250.

  31. Tavli B. Broadcast capacity of wireless networks. IEEE Communications Letters, 2006, 10(2): 68–69.

    Article  Google Scholar 

  32. Li X Y, Liu Y H, Li S, Tang S J. Multicast capacity of wireless ad hoc networks under Gaussian channel model. IEEE/ACM Transactions on Networking, 2010, 18(4): 1145–1157.

    Article  Google Scholar 

  33. Wang X B, Huang W T, Wang S X, Zhang J B, Hu C H. Delay and capacity tradeoff analysis for MotionCast. IEEE/ACM Transactions on Networking, 2011, 19(5): 1354–1367.

    Article  Google Scholar 

  34. Wang Y, Chu X Y, Wang X B, Cheng Y. Optimal multicast capacity and delay tradeoffs in MANETs: A global perspective. In Proc. INFOCOM, Shanghai, China, April 10-15, 2011, pp.640–648.

  35. Wang Q S, Wang X B, Lin X J. Mobility increases the connectivity of K-hop clustered wireless networks. In Proc. the 15th MobiCom, Beijing, China, Sept. 20-25, 2009, pp.121–132.

  36. Lee K, Hong S, Kim S J, Rhee I, Chong S. Slaw: A new mobility model for human walks. In Proc. INFOCOM, Rio de Janeiro, Brazil, April 19-25, 2009, pp.855–863.

  37. Zemlianov A, Gustavo de V. Capacity of ad hoc wireless networks with infrastructure support. IEEE Journal on Selected Areas in Communications, 2005, 23(3): 657–667.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Lu Lu.

Additional information

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61073028, 61021062, 60803111, the National Basic Research 973 Program of China under Grant No. 2009CB320705, the Key Project of the Research Program of Jiangsu Province of China under Grant No. BE2010179, and the Natural Science Foundation of Jiangsu Province of China under Grant No. BK2009100.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Li, WZ., Guo, S. et al. Delay and Capacity Trade-offs in Mobile Wireless Networks with Infrastructure Support. J. Comput. Sci. Technol. 27, 328–340 (2012). https://doi.org/10.1007/s11390-012-1226-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-012-1226-z

Keywords

Navigation