Skip to main content

Advertisement

Log in

Assessment of frozen ground organic carbon pool on the Qinghai-Tibet Plateau

  • Soils, Sec 2 • Global Change, Environ Risk Assess, Sustainable Land Use • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

Under rapid climate change, soil organic carbon (SOC) dynamic in frozen ground may significantly influence terrestrial carbon cycles. The aim of this study was to investigate the storage, spatial patterns, and influencing factors of SOC in frozen ground on the Qinghai-Tibet Plateau, which known as the earth’s Third Pole.

Materials and methods

Using the observed edaphic data from China’s Second National Soil Survey, we estimated the SOC storage (SOCS) of frozen ground (including permafrost, seasonally, and short time frozen ground) on the plateau with a depth of 0–3 m. Furthermore, the effect of vegetation and climate factors on spatial variance of SOC density (SOCD) was analyzed.

Results and discussion

The SOCD decreased from the southeastern to the northwestern part of the plateau, and increased with shorten of freezing duration. SOCS of permafrost, seasonally, and short time frozen ground were calculated as 40.9 (34.2–47.6), 26.7 (24.1–29.4), and 6 (5.6–6.4) Pg, making a total of 73.6 (63.9–83.3) Pg in 0–3 m depth on the plateau. Normalized difference vegetation index and mean annual precipitation could significantly affect the spatial distribution of SOC in permafrost and seasonally frozen ground.

Conclusions

The soil in plateau frozen ground contained substantial organic carbon, which could be affected by plant and climate variables. However, the heterogeneous landform may make the fate of carbon more complicated in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott BW, Larouche JR, Jones JB, Bowden WB, Balser AW (2014) Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. J Geophys Res Biogeosci 119:2049–2063

    Article  CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Bockheim JG, Munroe JS (2014) Organic carbon pools and genesis of Alpine soils with permafrost: a review. Arctic Antarct Alp Res 46:987–1006

    Article  Google Scholar 

  • Brahim N, Bernoux M, Gallali T (2012) Pedotransfer functions to estimate soil bulk density for Northern Africa: Tunisia case. J Arid Environ 81:77–83

    Article  Google Scholar 

  • Callesen I, Liski J, Raulundrasmussen K, Olsson M, Taustrand L, Vesterdal L, Westman CJ (2003) Soil carbon stores in Nordic well-drained forest soils-relationship with climate and texture class. Glob Chang Biol 9:358–370

    Article  Google Scholar 

  • Chaplot VAM, Rumpel C, Valentin C (2007) Water erosion impact on soil and carbon redistributions within uplands of Mekong River. Glob Biogeochem Cycles 19

  • Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X, Gong P, Yao T, Wu J (2013) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Chang Biol 19:2940–2955

    Article  Google Scholar 

  • Chen L, Liang J, Qin S, Liu L, Fang K, Xu Y, Ding J, Li F, Luo Y, Yang Y (2016) Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat Commun 7. https://doi.org/10.1038/ncomms13046

  • Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res: Earth Sur 112(F2). https://doi.org/10.1029/2006JF000631

  • Cheng G, Zhao L (2000) The problems associated with permafrost in the development of the Qinghai-Xizang Plateau. Quart Sci 6:521–531

    Google Scholar 

  • Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, Clark JS, Classen AT, Dijkstra FA, Elberling B, Emmett BA, Estiarte M, Frey SD, Guo J, Harte J, Jiang L, Johnson BR, Kröel-Dulay G, Larsen KS, Laudon H, Lavallee JM, Luo Y, Lupascu M, Ma LN, Marhan S, Michelsen A, Mohan J, Niu S, Pendall E, Peñuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds LL, Schmidt IK, Sistla S, Sokol NW, Templer PH, Treseder KK, Welker JM, Bradford MA (2016) Quantifying global soil carbon losses in response to warming. Nature 540:104–108

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  Google Scholar 

  • Ding J, Li F, Yang G, Chen L, Zhang B, Liu L, Fang K, Qin S, Chen Y, Peng Y, Ji C, He H, Smith P, Yang Y (2016) The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Glob Chang Biol 22:2688–2701

    Article  Google Scholar 

  • Dorji T, Odeh I, Field D (2014) Vertical distribution of soil organic carbon density in relation to land use/cover, altitude and slope aspect in the Eastern Himalayas. Land 3:1232–1250

    Article  Google Scholar 

  • Epstein HE, Burke IC, Lauenroth WK (2002) Regional patterns of decomposition and primary production rates in the US Great Plains. Ecology 83:320–327

    Google Scholar 

  • Fang J, Liu G, Xu S (1996) Soil carbon pool in China and its global significance. J Environ Sci 8:249–254

    CAS  Google Scholar 

  • Feng RP (1993) Soil species of Gansu. Gansu Science and Technology Press, Lanzhou

    Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    Article  CAS  Google Scholar 

  • Fu G, Shen ZX, Sun W, Zhong ZM (2015) A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau. J Plant Growth Regul 34:57–65

    Article  CAS  Google Scholar 

  • Fuchs M, Kuhry P, Hugelius G (2015) Low below-ground organic carbon storage in a subarctic Alpine permafrost environment. Cryosphere 9:427–438

    Article  Google Scholar 

  • Goidts E, van Wesemael B, Crucifix M (2009) Magnitude and sources of uncertainties in soil organic carbon (SOC) stock assessments at various scales. Eur J Soil Sci 60:723–739

    Article  CAS  Google Scholar 

  • Haeberli W, Cheng G, Gorbunov AP, Harris SA (1993) Mountain permafrost and climatic change. Permafr Periglac Process 4:165–174

    Article  Google Scholar 

  • Henry HA (2008) Climate change and soil freezing dynamics: historical trends and projected changes. Clim Chang 87:421–434

    Article  CAS  Google Scholar 

  • Hou X (2001) 1:1000000 Vegetation Atlas of China. Science Press, Beijing

    Google Scholar 

  • Hou ZX, Zeng Q (1993) Soil species of Xinjiang. Xinjiang Science Technology and Health Press, Urumchi

    Google Scholar 

  • Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593

    Article  Google Scholar 

  • Jin HJ, Luo DL, Wang SL, Lü LZ, Wu JC (2011) Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau. Sci Cold Arid Reg 3:281–305

    Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Kato T, Tang Y, Song G, Hirota M, Cui X, Du M, Li Y, Zhao X, Oikawa T (2004) Seasonal patterns of gross primary production and ecosystem respiration in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau. J Geophys Res Atmos 109:1045–1056

    Google Scholar 

  • Kato T, Tang Y, Gu S, Hirota M, Du M, Li Y, Zhao X (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Glob Chang Biol 12:1285–1298

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  Google Scholar 

  • Li X, Jin R, Pan X, Zhang T, Guo J (2012) Changes in the near-surface soil freeze–thaw cycle on the Qinghai-Tibetan Plateau. Int J Appl Earth Obs Geoinf 17:33–42

    Article  Google Scholar 

  • Liu SY (1995) Soil species of Qinghai. China Agriculture Press, Beijing

    Google Scholar 

  • Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742

    Article  Google Scholar 

  • Liu SQ, Li JP (1994) Soil species of Tibet Autonomous Region. Science Press, Beijing

    Google Scholar 

  • Liu W, Chen S, Qin X, Baumann F, Scholten T, Zhou Z, Sun W, Zhang T, Ren J, Qin D (2012) Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai–Tibetan Plateau. Environ Res Lett 7:035401

    Article  CAS  Google Scholar 

  • Lu M, Zhou X, Yang Q, Li H, Luo Y, Fang C, Chen J, Yang X, Li B (2013) Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94:726–738

    Article  Google Scholar 

  • Matzner E, Borken W (2008) Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. Eur J Soil Sci 59:274–284

    Article  Google Scholar 

  • Meng ND (1994) Soil species of Sichuan. Sichuan Science and Technology Press, Chengdu

    Google Scholar 

  • Mu C, Zhang T, Wu Q, Peng X, Cao B, Zhang X, Cao B, Cheng G (2015) Editorial: organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau. Cryosphere 9:479–486

    Article  Google Scholar 

  • Mu C, Zhang T, Zhang X, Cao B, Peng X (2016a) Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the northern Qinghai-Tibet Plateau. Eur J Soil Sci 67:773–781

    Article  CAS  Google Scholar 

  • Mu C, Zhang T, Zhang X, Li L, Guo H, Zhao Q, Cao L, Wu Q, Cheng G (2016b) Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau. J Geophys Res Biogeosci 121:1781–1791

    Article  CAS  Google Scholar 

  • Peng F, You Q, Xu M, Guo J, Wang T, Xue X (2014) Effects of warming and clipping on ecosystem carbon fluxes across two hydrologically contrasting years in an alpine meadow of the Qinghai-Tibet Plateau. PLoS One 9:e109319

    Article  CAS  Google Scholar 

  • Peng F, Quangang Y, Xue X, Guo J, Wang T (2015) Effects of rodent-induced land degradation on ecosystem carbon fluxes in alpine meadow in the Qinghai-Tibet Plateau, China. Solid Earth 6:303–310

    Article  Google Scholar 

  • Peng X, Frauenfeld OW, Zhang T, Wang K, Cao B, Zhong X, Su H, Mu C (2017) Response of seasonal soil freeze depth to climate change across China. Cryosphere 11:1059–1073

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    Article  CAS  Google Scholar 

  • Prokushkin AS, Kawahigashi M, Tokareva IV (2009) Global warming and dissolved organic carbon release from permafrost soils. In: Margesin R (ed) . Springer, pp 237–250

  • Qiu GQ, Zhou YW, Guo DX, Wang YX (2000) Map of geocryological regionalization and classification in China. Science Press, Beijing

    Google Scholar 

  • Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158

    Article  CAS  Google Scholar 

  • Schaefer K, Lantuit H, Romanovsky VE, Schuur EAG, Witt R (2014) The impact of the permafrost carbon feedback on global climate. Environ Res Lett 9(8)

  • Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob Biogeochem Cycles 8:279–293

    Article  CAS  Google Scholar 

  • Schuur EA, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559

    Article  CAS  Google Scholar 

  • Schuur E, McGuire A, Schädel C, Grosse G, Harden J, Hayes D, Hugelius G, Koven C, Kuhry P, Lawrence D (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179

    Article  CAS  Google Scholar 

  • Sun H, Zheng D (1998) Development formation and evolution of the Qinghai-Tibet Plateau. Guangdong Science and Technology Press, Guangzhou

    Google Scholar 

  • Tian Y, Ouyang H, Xu X, Song M, Zhou C (2008) Distribution characteristics of soil organic carbon storage and density on the Qinghai-Tibet Plateau. Acta Pedol Sin 45:933–942

    Google Scholar 

  • Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: cryosphere. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 317–382

    Google Scholar 

  • Wang WF, Qiu DY, Liu QM (1994) Soil species of Yunnan. Yunnan Science and Technology Press, Kunming

    Google Scholar 

  • Wang S, Huang M, Shao X, Mickler RA, Li K, Ji J (2004) Vertical distribution of soil organic carbon in China. Environ Manag 33(suppl 1):S200–S209

    Google Scholar 

  • Wang G, Li Y, Wu Q, Wang Y (2006) Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Sci China 49:1156–1169

    Article  Google Scholar 

  • Wang Y, Liu H, Chung H, Yu L, Mi Z, Geng Y, Jing X, Wang S, Zeng H, Cao G, Zhao X, He J-S (2014) Non-growing-season soil respiration is controlled by freezing and thawing processes in the summer monsoon-dominated Tibetan alpine grassland. Glob Biogeochem Cycles 28:1081–1095

    Article  CAS  Google Scholar 

  • Wu Q, Zhang T (2008) Recent permafrost warming on the Qinghai-Tibetan Plateau. J Geophys Res: Atmos 113(D13). https://doi.org/10.1029/2007JD009539

  • Wu H, Guo Z, Peng C (2003a) Distribution and storage of soil organic carbon in China. Glob Biogeochem Cycles 17. https://doi.org/10.1029/2001GB001844

  • Wu H, Guo Z, Peng C (2003b) Land use induced changes of organic carbon storage in soils of China. Glob Chang Biol 9:305–315

    Article  Google Scholar 

  • Wu Q, Zhang T, Liu Y (2010) Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Glob Planet Chang 72:32–38

    Article  Google Scholar 

  • Wu Q, Zhang T, Liu Y (2012) Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010. Cryosphere 6:607–612

    Article  Google Scholar 

  • Wynn JG, Bird MI, Vellen L, Grandclement E, Carter JO, Berry SL (2006) Continental-scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Glob Biogeochem Cycles 20(2). https://doi.org/10.1029/2005GB002576

  • Xie XL, Sun B, Zhou HZ, Li AB (2004) Soil organic carbon storage in China. Pedosphere 14:491–500

    CAS  Google Scholar 

  • Xue X, Guo J, Han BS, Sun QW, Liu LC (2009) The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau. Geomorphology 165:182–190

    Article  Google Scholar 

  • Yang Y, Mohammat A, Feng J, Zhou R, Fang J (2007) Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry 84:131–141

    Article  Google Scholar 

  • Yang Y, Fang J, Tang Y, Ji C, Zheng C, He J, Zhu B (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Chang Biol 14:1592–1599

    Article  Google Scholar 

  • Yang Y, Fang J, Smith P, Tang Y, Chen A, Ji C, Hu H, Rao S, Tan K, HE JS (2009) Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Glob Chang Biol 15:2723–2729

    Article  Google Scholar 

  • Yang M, Nelson FE, Shiklomanov NI, Guo D, Wan G (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth-Sci Rev 103:31–44

    Article  Google Scholar 

  • Yang ZP, Gao JX, Zhao L, Xu XL, Ouyang H (2013) Linking thaw depth with soil moisture and plant community composition: effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet Plateau (SCI). Plant Soil 367:687–700

    Article  CAS  Google Scholar 

  • Yi S, Wang X, Qin Y, Xiang B, Ding Y (2014) Responses of alpine grassland on Qinghai–Tibetan Plateau to climate warming and permafrost degradation: a modeling perspective. Environ Res Lett 9:074014

    Article  Google Scholar 

  • Zhang T, Barry R, Knowles K, Ling F, Armstrong R (2003) Distribution of seasonally and perennially frozen ground in the Northern Hemisphere, Proceedings of the 8th International Conference on Permafrost. AA Balkema Publishers, pp 1289–1294

  • Zhao L, Ping C-L, Yang D, Cheng G, Ding Y, Liu S (2004) Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) Plateau, China. Glob Planet Chang 43:19–31

    Article  Google Scholar 

  • Zhao L, Li Y, Xu S, Zhou H, Gu S, Yu G, Zhao X (2006) Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan Plateau. Glob Chang Biol 12:1940–1953

    Article  Google Scholar 

  • Zhou YW, Guo DX, Qiu GQ, Cheng GD, Li SD (2000) Geocryology in China. Science Press, Bejing

    Google Scholar 

  • Zhuang Q, He J, Lu Y, Ji L, Xiao J, Luo T (2010) Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical model. Glob Ecol Biogeogr 19:649–662

    Google Scholar 

  • Zimov SA, Schuur EA, Chapin IIIFS (2006) Permafrost and the global carbon budget. Science 312:1612–1613

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors give special thanks to Ms. Wan Xiong for her editing and valuable comments on the manuscript.

Funding

This study was supported by the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (QYZDB-SSW-DQC007), the National Key R & D Program of China (2016YFC0501802), and the National Natural Science Foundation of China (31570480, 41571220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai Chen.

Additional information

Responsible editor: Hailong Wang

Electronic supplementary material

ESM 1

(DOCX 993 kb)

ESM 2

(XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Chen, H., Zhu, Q. et al. Assessment of frozen ground organic carbon pool on the Qinghai-Tibet Plateau. J Soils Sediments 19, 128–139 (2019). https://doi.org/10.1007/s11368-018-2006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-018-2006-3

Keywords

Navigation