Skip to main content
Log in

Interactive effects of biochar addition and elevated carbon dioxide concentration on soil carbon and nitrogen pools in mine spoil

  • Soils, Sec 1 • Soil Organic Matter Dynamics and Nutrient Cycling • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to assess the effects of biochar on improving nitrogen (N) pools in mine spoil and examine the effects of elevated CO2 on soil carbon (C) storage.

Materials and methods

The experiment consisted of three plant species (Austrostipa ramossissima, Dichelachne micrantha, and Lomandra longifolia) planted in the N-poor mine spoil with application of biochar produced at three temperatures (650, 750, and 850 °C) under both ambient (400 μL L−1) and elevated (700 μL L−1) CO2. We assessed mine spoil total C and N concentrations and stable C and N isotope compositions (δ13C and δ15N), as well as hot water extractable organic C (HWEOC) and total N (HWETN) concentrations.

Results and discussion

Soil total N significantly increased following biochar application across all species. Elevated CO2 induced soil C loss for A. ramossissima and D. micrantha without biochar application and D. micrantha with the application of biochar produced at 750 °C. In contrast, elevated CO2 exhibited no significant effect on soil total C for A. littoralis, D. micrantha, or L. longifolia under any other biochar treatments.

Conclusions

Biochar application is a promising means to improve N retention and thus, reduce environmentally harmful N fluxes in mine spoil. However, elevated CO2 exhibited no significant effects on increasing soil total C, which indicated that mine spoil has limited potential to store rising atmospheric CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams M, Grierson P (2001) Stable isotopes at natural abundance in terrestrial plant ecology and ecophysiology: an update. Plant Biol 3:299–310

    Article  CAS  Google Scholar 

  • Agrawal R, Imielinski T, Swami A (1993) Mining association between sets of items in large database, In: Proceedings of the ACM-SIGMOD International Conference on Management of Data, Washington, DC, USA, 1993, pp 207–216

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  Google Scholar 

  • Anderson D, Goudie A, Parker A (2013) Global environments through the quaternary: exploring Evironmental Change. Oxford University Press, USA

    Book  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–8

    Article  CAS  Google Scholar 

  • Bai SH, Reverchon F, Xu CY, Xu Z, Blumfield TJ, Zhao H, Van Zwieten L, Wallace HM (2015a) Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biol Biochem 90:232–240

    Article  CAS  Google Scholar 

  • Bai SH, Xu CY, Xu Z, Blumfield TJ, Zhao H, Wallace H, Reverchon F, Van Zwieten L (2015b) Soil and foliar nutrient and nitrogen isotope composition (δ15N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard. Environ Sci Pollut Res 22:3803–3809

    Article  Google Scholar 

  • Bai SH, Xu CY, Xu ZH, Blumfield TJ, Wallace HM, Walton DA, Randal BW, Van Zwieten L (2016) Wood base biochar alters inorganic N. Wood base biochar alters inorganic N. Acta Hortic. doi:10.17660/ActaHortic.2016.1109.24

  • Berendse F, Aerts R (1987) Nitrogen use efficiency: a biologically meaningful definition. Funct Ecol 1:293–296

    Google Scholar 

  • Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327

    Article  Google Scholar 

  • Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H (2012) Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem 46:73–79

    Article  CAS  Google Scholar 

  • Cardon Z, Hungate B, Cambardella C, Chapin F, Field C, Holland E, Mooney H (2001) Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biol Biochem 33:365–373

    Article  CAS  Google Scholar 

  • Cayuela M, Van Zwieten L, Singh B, Jeffery S, Roig A, Sánchez-Monedero M (2014) Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16

    Article  CAS  Google Scholar 

  • Chen CR, Xu ZH (2005) Soil carbon and nitrogen pools and microbial properties in a 6-year-old slash pine plantation of subtropical Australia: impacts of harvest residue management. For Ecol Manag 206:237–247

    Article  Google Scholar 

  • Cheng W (1999) Rhizosphere feedbacks in elevated CO2. Tree Physiol 19:313–320

    Article  Google Scholar 

  • Clemmensen K, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay R, Wardle D, Lindahl B (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  Google Scholar 

  • Clough TJ, Condron LM, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3:275–293

    Article  CAS  Google Scholar 

  • Curlevski NJ, Drigo B, Cairney JW, Anderson IC (2014) Influence of elevated atmospheric CO2 and water availability on soil fungal communities under Eucalyptus saligna. Soil Biol Biochem 70:263–271

    Article  CAS  Google Scholar 

  • Dalenberg J, Jager G (1989) Priming effect of some organic additions to 14C-labelled soil. Soil Biol Biochem 21:443–448

    Article  CAS  Google Scholar 

  • De Deyn GB, Cornelissen JH, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531

    Article  Google Scholar 

  • De Graaff MA, Van Groenigen KJ, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Chang Biol 12:2077–2091

    Article  Google Scholar 

  • Deenik JL, McClellan T, Uehara G, Antal MJ, Campbell S (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74:1259–1270

    Article  CAS  Google Scholar 

  • DeLuca TH, Gundale MJ, MacKenzie MD, Jones DL (2009) Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S (eds) Biochar for environmental management: Science and technology. Earthscan, London, pp 251–270

    Google Scholar 

  • Dempster DN, Jones DL, Murphy DV (2012) Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res 50:216–221

    Article  CAS  Google Scholar 

  • Dijkstra FA, Hobbie SE, Reich PB, Knops JM (2005) Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant Soil 272:41–52

    Article  CAS  Google Scholar 

  • Dorodnikov M, Kuzyakov Y, Fangmeier A, Wiesenberg GL (2011) C and N in soil organic matter density fractions under elevated atmospheric CO2: turnover vs. stabilization. Soil Biol Biochem 43:579–589

    Article  CAS  Google Scholar 

  • Dragovich D, Patterson J (1995) Condition of rehabilitated coal mines in the Hunter Valley, Australia. Land Degrad Dev 6:29–39

    Article  Google Scholar 

  • Dutta RK, Agrawal M (2002) Effect of tree plantations on the soil characteristics and microbial activity of coal mine spoil land. Trop Ecol 43:315–324

    CAS  Google Scholar 

  • Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  Google Scholar 

  • Finzi AC, Moore DJ, DeLucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim HS, Matamala R, McCarthy HR, Oren R (2006) Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87:15–25

    Article  Google Scholar 

  • Fisher N (2010) Sustainable Reintroduction of the Nitrogen Cycle Post Coal Mining Utilizing the Legume-rhizobia Symbiosis. PhD Thesis. University of Newcastle, Australia

  • Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320

    Article  Google Scholar 

  • Ghani A, Dexter M, Perrott K (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol Biochem 35:1231–1243

    Article  CAS  Google Scholar 

  • Güereña D, Lehmann J, Hanley K, Enders A, Hyland C, Riha S (2013) Nitrogen dynamics following field application of biochar in a temperate north American maize-based production system. Plant Soil 365:239–254

    Article  Google Scholar 

  • Hobbie EA, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157:115–126

    Article  CAS  Google Scholar 

  • Högberg P (1997) Tansley review no. 95 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Hungate BA, Holland EA, Jackson RB, Chapin FS, Mooney HA, Field CB (1997) The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388:576–579

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate Change 2014, Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team, Pachauri RK and Meyer LA (eds.). Updated in Jan 2017. IPCC, Geneva, Switzerland, 151 pp

  • Ippolito J, Novak J, Busscher W, Ahmedna M, Rehrah D, Watts D (2012) Switchgrass biochar affects two Aridisols. J Environ Qual 41:1123–1130

    Article  CAS  Google Scholar 

  • Jin Z, Chen X, Chen C, Tao P, Han Z, Zhang X (2016) Biochar impact on nitrate leaching in upland red soil, China. Environ Earth Sci 75:1109

    Article  Google Scholar 

  • Jones D, Rousk J, Edwards-Jones G, DeLuca T, Murphy D (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124

    Article  CAS  Google Scholar 

  • Kameyama K, Miyamoto T, Shiono T, Shinogi Y (2012) Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. J Environ Qual 41:1131–1137

    Article  CAS  Google Scholar 

  • Kammann C, Ratering S, Eckhard C, Müller C (2012) Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. J Environ Qual 41:1052–1066

    Article  CAS  Google Scholar 

  • Kanthle AK, Lenka NK, Lenka S, Tedia K (2016) Biochar impact on nitrate leaching as influenced by native soil organic carbon in an Inceptisol of central India. Soil Till Res 157:65–72

    Article  Google Scholar 

  • Langley JA, Megonigal JP (2010) Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466:96–99

    Article  CAS  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  Google Scholar 

  • Lehmann J, da Silva Jr JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'neill B, Skjemstad J, Thies J, Luizao F, Petersen J (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Luo Y, Durenkamp M, De Nobili M, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43:2304–2314

    Article  CAS  Google Scholar 

  • Matsubara YI, Hasegawa N, Fukui H (2002) Incidence of fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J Jpn Soc Hortic Sci 71:370–374

    Article  Google Scholar 

  • Natelhoffer K, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640

    Article  CAS  Google Scholar 

  • Nelissen V, Rütting T, Huygens D, Staelens J, Ruysschaert G, Boeckx P (2012) Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol Biochem 55:20–27

    Article  CAS  Google Scholar 

  • Nguyen N, Xu CY, Tahmasbian I, Xu ZH, Zhou X, Wallace HM, Bai SH (2017) Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma 288:79–96

    Article  CAS  Google Scholar 

  • Pendall E, King JY (2007) Soil organic matter dynamics in grassland soils under elevated CO2: insights from long-term incubations and stable isotopes. Soil Biol Biochem 39:2628–2639

    Article  CAS  Google Scholar 

  • Qiao N, Schaefer D, Blagodatskaya E, Zou X, Xu X, Kuzyakov Y (2014) Labile carbon retention compensates for CO2 released by priming in forest soils. Glob Chang Biol 20:1943–1954

    Article  Google Scholar 

  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48:271–284

    Article  CAS  Google Scholar 

  • Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods. Inkata Press Pty Ltd

  • Reich PB, Hungate BA, Luo Y (2006) Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu Rev Ecol Syst:611–636

  • Reverchon F, Flicker RC, Yang H, Yan G, Xu Z, Chen C, Bai SH, Zhang D (2014) Changes in δ15N in a soil-plant system under different biochar feedstocks and application rates. Biol Fertil Soils 50:275–283

    Article  CAS  Google Scholar 

  • Reverchon F, Yang H, Ho TY, Yan G, Wang J, Xu Z, Chen C, Zhang D (2015) A preliminary assessment of the potential of using an acacia-biochar system for spent mine site rehabilitation. Environ Sci Pollut Res 22:2138–2144

    Article  CAS  Google Scholar 

  • Robertson G, Groffman P (2007) Nitrogen transformations. Soil microbiology, ecology, and biochemistry. In: Paul EA (ed) Soil microbiology, bio-chemistry, and ecology. Springer, New York, pp 341–364

    Chapter  Google Scholar 

  • Ross D, Tate K, Newton P, Wilde R, Clark H (2001) Carbon and nitrogen pools and mineralization in a grassland organic soil at a New Zealand carbon dioxide spring. Soil Biol Biochem 33:849–852

    Article  CAS  Google Scholar 

  • Schlesinger WH (1995) An overview of the C cycle. In: Lal R, Kimble J, Levin J, Stewart BA (eds) Soils and global Change. Lewis Publishers, Boca Raton, pp 9–26

    Google Scholar 

  • Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347

    Article  CAS  Google Scholar 

  • Sohi S, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Sokolov AP, Kicklighter DW, Melillo JM, Felzer BS, Schlosser CA, Cronin TW (2008) Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J Clim 21:3776–3796

    Article  Google Scholar 

  • Sparling G, Vojvodić-Vuković M, Schipper LA (1998) Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial biomass C. Soil Biol Biochem 30:1469–1472

    Article  CAS  Google Scholar 

  • Steiner C, Glaser B, Geraldes Teixeira W, Lehmann J, Blum WE, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171:893–899

    Article  CAS  Google Scholar 

  • Sulman BN, Phillips RP, Oishi AC, Shevliakova E, Pacala SW (2014) Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat Clim Chang 4:1099–1102

    Article  CAS  Google Scholar 

  • Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque JF, Feddema JJ, Lee YH (2009) Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences 6:2099–2120

    Article  CAS  Google Scholar 

  • Van Groenigen KJ, Osenberg CW, Hungate BA (2011) Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475:214

    Article  Google Scholar 

  • Van Zwieten L, Singh B, Kimber S, Murphy D, Macdonald L, Rust J, Morris S (2014) An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agric Ecosyst Environ 191:53–62

    Article  Google Scholar 

  • Wang Y, Zhang L, Yang H, Yan G, Xu Z, Chen C, Zhang D (2016) Biochar nutrient availability rather than its water holding capacity governs the growth of both C3 and C4 plants. J Soils Sediments 16(3):801–810

    Article  CAS  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Woodward FI (2002) Potential impacts of global elevated CO2 concentrations on plants. Curr Opin Plant Biol 5:207–211

    Article  CAS  Google Scholar 

  • Xu CY, Bai SH, Hao Y, Rachaputi RC, Wang H, Xu Z, Wallace H (2015a) Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environ Sci Pollut Res 22:6112–6125

    Article  CAS  Google Scholar 

  • Xu CY, Bai SH, Hao Y, Rachaputi RC, Xu Z, Wallace HM (2015b) Peanut shell biochar improves soil properties and peanut kernel quality on a red ferrosol. J Soils Sediments 15:2220–2231

    Article  CAS  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Zhang K, Chen L, Li Y, Brookes PC, Xu J, Luo Y (2017) The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol Fertil Soils 53:77–87

    Article  CAS  Google Scholar 

  • Zheng H, Wang Z, Deng X, Herbert S, Xing B (2013) Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206:32–39

    Article  CAS  Google Scholar 

  • Zimmerman AR, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Australian Research Council at the Hawkesbury Institute for the Environment (Western Sydney University, Penrith, NSW, Australia) and by the Griffith University PhD scholarships and operating funding. The spoil mine soil was provided by Newcastle University (Newcastle, NSW, Australia) and Thiess Pty Ltd. (Singleton, NSW, Australia) and the biochar was provided by the University of Western Australia (Perth, WA, Australia).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaling Zhang or Zhihong Xu.

Additional information

Responsible editor: Caixian Tang

Yaling Zhang and Hong Chen are the equal first authors.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, H., Bai, S.H. et al. Interactive effects of biochar addition and elevated carbon dioxide concentration on soil carbon and nitrogen pools in mine spoil. J Soils Sediments 17, 2400–2409 (2017). https://doi.org/10.1007/s11368-017-1757-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-017-1757-6

Keywords