Skip to main content

Advertisement

Log in

An integrated geochemical and mineralogical approach for the evaluation of arsenic mobility in mining soils

  • SOILS, SEC 2 • GLOBAL CHANGE, ENVIRON RISK ASSESS, SUSTAINABLE LAND USE • RESEARCH ARTICLE
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The assessment of risk related to the presence of potentially toxic elements in soils is strictly related to the knowledge of their form and mobility. These relevant properties depend on the complex interactions of the elements of concern with the soil particles that generally cannot be addressed by a single technique. This study presents an integrated approach implementing geochemical and mineralogical investigation techniques on samples from a former mining area (Tolfa Mountains district, northern Latium, Italy), where exploiting activities occurred until the recent past. In particular, the As total concentration and the As distribution in solid phases is studied with the aim to evaluate the possibility of environmental pollution and consequent risks for the health of people living in the area and possibly affected in case of significant mobilization of this toxic element.

Materials and methods

Chemical (ICP-MS, ICP-OES) and mineralogical (X-ray diffraction (XRD), scanning electron microscopy–energy dispersive X-ray (SEM-EDX), X-ray absorption near-edge structure (XANES)) analyses and the evaluation of the heavy metal mobility (by means of a sequential extraction procedure) were performed.

Results and discussion

Chemical analyses show a high As content in the soils collected immediately downstream the marcasite mine waste deposit, that is the starting point of As pollution over the whole area. XANES analyses show that As occurs in two oxidation states (AsIII and AsV) simultaneously in the tailing samples and nearby, while it has been mainly or totally transformed into AsV at increasing distance from the mine. XRD data show that sheet silicates don’t affect As behavior, whereas sequential extractions and SEM-EDX analyses reveal the evident association of As and Fe oxyhydroxides content.

Conclusions

The use of an integrated geochemical-mineralogical approach allows to single out the contaminant forms and the relative potential threat. Arsenic in the surface level of such soils could be mobilized in the case of extreme meteorological or of a not well planned human event, even though there is no evidence yet of any serious contamination of either underground or flowing waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahumada I, Escudero P, Ascar L, Mendoza J, Richter P (2004) Extractability of arsenic, copper, and lead in soils of a mining and agricultural zone in central Chile. Commun Soil Sci Plan 35:1615–1634

    Article  CAS  Google Scholar 

  • Arcon L, van Elteren JT, Glass HJ, Kodre A, Slejkovec Z (2005) EXAFS and XANES study of arsenic in contaminated soil. X-ray Spectrom 34:435–438

    Article  CAS  Google Scholar 

  • Bertagnini A, Derita D, Landi P (1995) Mafic inclusions in the silica-rich rocks of the Tolfa-Ceriti-Manziana volcanic district (Tuscan Province, Central Italy): chemistry and mineralogy. Mineral Petrol 54:261–276

    Article  CAS  Google Scholar 

  • Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. Sulfate minerals—Crystallography, geochemistry and environmental significance. Rev Mineral Geochem 40:351–403

    CAS  Google Scholar 

  • Blowes DW, Ptacek CJ, Jambor JL, Weisener CG, Heinrich DH, Karl KT (2003) The geochemistry of acid mine drainage. In: Treatise on geochemistry. Pergamon, Oxford, pp 149–204

    Google Scholar 

  • Brown GE, Foster AL, Ostergren JD (1999) Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc Nat Acad Sci USA 94:3388–3395

    Article  Google Scholar 

  • Calderoni G, Ferrini V, Masi U (1985) Distribution and significance of Pb and Ti in the sulfides and host rocks from the hydrothermal mineralization of the Tolfa Mountains (Latium, Central Italy). Chem Geol 51:29–39

    Article  CAS  Google Scholar 

  • Cances B, Juillot F, Morin G, Laperche V, Alvarez L, Proux O, Hazemann JL, Brown GE, Calas G (2005) XAS evidence of As(V) association with iron oxyhydroxides in a contaminated soil at a former arsenical pesticide processing plant. Environ Sci Technol 39:9398–9405

    Article  CAS  Google Scholar 

  • Carlson L, Bigham JM, Schwertmann U, Kyek A, Wagner F (2002) Scavenging of As from acid mine drainage by Schwertmannite and Ferrihydrite: a comparison with synthetic analogues. Environ Sci Technol 36:1712–1719

    Article  CAS  Google Scholar 

  • Chakraborty S, Wolthers M, Chatterjee D, Charlet L (2007) Adsorption of arsenite and arsenate onto muscovite and biotite mica. J Colloid Interface Sci 309(2):392–401

    Article  CAS  Google Scholar 

  • Corwin DL, David A, Goldberg S (1999) Mobility of arsenic in soil from the Rocky Mountain Arsenal area. J Contam Hydrol 39:35–58

    Article  CAS  Google Scholar 

  • Courtin-Nomade A, Grosbois C, Bril H, Roussel C (2005) Spatial variability of arsenic in some iron-rich deposits generated by acid mine drainage. Appl Geochem 20:383–396

    Article  CAS  Google Scholar 

  • Davis A, Ruby MV, Bloom M, Schoof R, Freeman G, Bergstrom PD (1996) Mineralogic constraints on the bioavailability of arsenic in smelter-impacted soils. Environ Sci Technol 30:392–399

    Article  CAS  Google Scholar 

  • De Rita D, Bertagnini A, Faccenna C, Landi P, Rosa C, Zarlenga F, Di Filippo M, Carboni G (1997) Evoluzione geopetrografica-strutturale dell’area tolfetana. Boll Soc Geol Ital 116:143–175

    Google Scholar 

  • Dold B (2003a) Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD). Appl Geochem 18:1531–1540

    Article  CAS  Google Scholar 

  • Dold B (2003b) Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J Geochem Explor 80:55–68

    Article  CAS  Google Scholar 

  • Farquhar ML, Charnock JM, Livens FR, Vaughan DJ (2002) Mechanisms of Arsenic Uptake from Aqueous Solution by Interaction with Goethite, Lepidocrocite, Mackinawite, and Pyrite: an X-ray Absorption Spectroscopy Study. Environ Sci Technol 36:1757–1762

    Article  CAS  Google Scholar 

  • Ferrini V (1975) Studio geopetrologico del complesso vulcanico tolfetano-cerite (Lazio)—VIIb: le mineralizzazioni a solfuri misti in un settore dei monti della Tolfa. Istituto di Petrologia Università di Roma, Roma

    Google Scholar 

  • Filippi M, Golias V, Pertold Z (2004) Arsenic in contaminated soils and anthropogenic deposits at the Mokrsko, Roudny, and Kasperske Hory gold deposits, Bohemian Massif (CZ). Environ Geol 45:716–730

    Article  CAS  Google Scholar 

  • Foster AL, Brown GE, Tingle TN, Parks GA (1998) Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy. Am Mineral 83:553–568

    CAS  Google Scholar 

  • Garcia G, Penas JM, Manteca JI (2008) Zn mobility and geochemistry in surface sulfide mining soils from SE Spain. Environ Res 106:333–339

    Article  CAS  Google Scholar 

  • Ghosh A, Sarkar D, Nayak D, Bhattacharyya P (2004) Assessment of a sequential extraction procedure for fractionation of soil arsenic in contaminated soil. Arch Agron Soil Sci 50:583–591

    Article  CAS  Google Scholar 

  • Giampaolo C, Lo Mastro S, Aldega L (2005) Metodo Ufficiale no IV.2—Diffrattometria a raggi X. Analisi mineralogica semiquantitativa. Gazzetta Ufficiale n. 79 del 06-04-2005, Supplemento ordinario n. 60—Serie Generale, Ministero delle Politiche Agricole e Forestali, Decreto 21 Marzo 2005, Roma

  • Giere R, Sidenko NV, Lazareva EV (2003) The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Appl Geochem 18:1347–1359

    Article  CAS  Google Scholar 

  • Gleyzes C, Tellier S, Astruc M (2002) Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal Chem 21(6 + 7):451–467

    Article  CAS  Google Scholar 

  • Goldberg S (2002) Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci Soc Am J 66:413–421

    Article  CAS  Google Scholar 

  • Jambor JI, Nordstrom DK, Alpers CN (2000) Metal-sulfate salts from sulfide mineral oxidation, sulfate minerals—crystallography, geochemistry and environmental significance. Rev Mineral Geochem 40:303–350

    CAS  Google Scholar 

  • Juillot F, Ildefonse P, Morin G, Calas G, de Kersabiec AM, Benedetti M (1999) Remobilization of arsenic from buried wastes at an industrial site: mineralogical and geochemical control. Appl Geochem 14:1031–1048

    Article  CAS  Google Scholar 

  • Juillot F, Morin G, Ildefonse P, Trainor TP, Benedetti M, Galoisy L, Calas G, Brown GE (2003) Occurrence of Zn/Al hydrotalcite in smelter-impacted soils from northern France: evidence from EXAFS spectroscopy and chemical extractions. Am Mineral 88:509–526

    CAS  Google Scholar 

  • Jurjovec J, Blowes DW, Ptacek CJ, Mayer KU (2004) Multicomponent reactive transport modeling of acid neutralization reactions in mine tailings. Water Resour Res 40(11):W1120201–W1120217

    Article  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kim MJ, Ahn KH, Jung YJ (2002) Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea. Chemosphere 49:307–312

    Article  CAS  Google Scholar 

  • Larner BL, Seen AJ, Townsend AT (2006) Comparative study of optimised BCR sequential extraction scheme and acid leaching of elements in the certified reference material NIST 2711. Anal Chim Acta 556:444–449

    Article  CAS  Google Scholar 

  • Laurora A, Brigatti MF, Mottana A, Malferrari D, Caprilli E (2007) Crystal chemistry of trioctahedral micas in alkaline and subalkaline volcanic rocks: a case study from Mt. Sassetto (Tolfa district, Latium, central Italy). Am Mineral 92:468–480

    Article  CAS  Google Scholar 

  • Lin ZX, Puls RW (2000) Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environ Geol 39:753–759

    Article  CAS  Google Scholar 

  • Lin ZX, Puls RW (2003) Potential indicators for the assessment of arsenic natural attenuation in the subsurface. Adv Environ Res 7:825–834

    Article  CAS  Google Scholar 

  • Manning BA, Goldberg S (1997) Adsorption and stability of arsenic (III) at the clay mineral-water inteface. Environ Sci Technol 31:2005–2011

    Article  CAS  Google Scholar 

  • Manning BA, Fendorf SE, Goldberg S (1998) Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes. Environ Sci Technol 32:2383–2388

    Article  CAS  Google Scholar 

  • Marin B, Valladon M, Polve M, Monaco A (1997) Reproducibility testing of a sequential extraction scheme for the determination of trace metal speciation in a marine reference sediment by inductively coupled plasma-mass spectrometry. Anal Chim Acta 342:91–112

    Article  CAS  Google Scholar 

  • Morin G, Calas G (2006) Arsenic in soils, mine tailings, and former industrial sites. Elements 2:97–101

    Article  CAS  Google Scholar 

  • Morin G, Lecocq D, Juillot F, Calas G, Ildefonse P, Belin S, Briois V, Dillmann P, Chevallier P, Gauthier C, Sole A, Petit PE, Borensztajn S (2002) EXAFS evidence of sorbed arsenic(V) and pharmacoside rite in a soil overlying the Echassieres geochemical anomaly, Allier, France. Bull Soc Géol Fr 173:281–291

    Article  CAS  Google Scholar 

  • Morin G, Juillot F, Casiot C, Bruneel O, Personne JC, Elbaz-Poulichet F, Leblanc M, Ildefonse P, Calas G (2003) Bacterial formation of tooeleite and mixed Arsenic(III) or Arsenic(V)-Iron(III) gels in the carnoulbs acid mine drainage, France. A XANES, XRD, and SEM study. Environ Sci Technol 37:1705–1712

    Article  CAS  Google Scholar 

  • Mottana A (2004) X-ray absorption spectroscopy in mineralogy: theory and experiment in the XANES region. In: EMU Notes in Mineralogy. Eötvös University Press, Budapest, pp 465–552

    Google Scholar 

  • Nesbitt HW, Muir IJ, Prarr AR (1995) Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation. Geochim Cosmochim Acta 59(9):1773–1786

    Google Scholar 

  • Ona-Nguema G, Morin G, Juillot F, Calas G, Brown GE (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ Sci Technol 39:9147–9155

    Article  CAS  Google Scholar 

  • Paktunc D, Foster A, Heald S, Laflamme G (2004) Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. Geochim Cosmochim Acta 68:969–983

    Article  CAS  Google Scholar 

  • Pedersen HD, Postma D, Jakobsen R (2006) Release of arsenic associated with the reduction and transformation of iron oxides. Geochim Cosmochim Acta 70:4116–4129

    Article  CAS  Google Scholar 

  • Rattray KJ, Taylor MR, Bevan DJM, Pring A (1996) Compositional segregation and solid solution in the lead-dominant alunite-type minerals from Broken Hill, NSW. Mineral Mag 60:779–785

    Article  CAS  Google Scholar 

  • Reimann C, Siewers U, Tarvainen T, Bityukova L, Eriksson J, Gilucis A, Gregorauskiene V, Lukashev V, Matinian N, Pasieczna A (2003) Agricultural soils in northern Europe: a geochemical atlas. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Roussel C, Neel C, Bril H (2000) Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Sci Total Environ 263:209–219

    Article  CAS  Google Scholar 

  • Savage KS, Tingle TN, O'Day PA, Waychunas GA, Bird DK (2000) Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Appl Geochem 15:1219–1244

    Article  CAS  Google Scholar 

  • Savage KS, Bird DK, O’Day PA (2005) Arsenic speciation in synthetic jarosite. Chem Geol 215:473–498

    Article  CAS  Google Scholar 

  • Sayers D, Bunker B (1988) Data analysis. In: Koningsberger DC, Prins R (eds) X-Ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. Wiley, New York

    Google Scholar 

  • Scott KM (1987) Solid solution in, and classification of, gossan-derived members of the alunite-jarosite family, NW Queensland, Australia. Am Mineral 72:178–187

    CAS  Google Scholar 

  • Sherman DM, Randall SR (2003) Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta 67:4223–4230

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smith E, Naidu R, Alston AM (2002) Chemistry of inorganic arsenic in soils: II. Effect of phosphorus, sodium, and calcium on arsenic sorption. J Environ Qual 31:557–563

    Article  CAS  Google Scholar 

  • Spadoni M, Voltaggio M, Cavarretta G (2005) Recognition of areas of anomalous concentration of potentially hazardous elements by means of a subcatchment-based discriminant analysis of stream sediments. J Geochem Explor 87:83–91

    Article  CAS  Google Scholar 

  • Strawn DG, Sparks DL (1999) The use of XAFS to distinguish between inner- and outer-sphere lead adsorption complexes on montmorillonite. J Colloid Interface Sci 216:257–269

    Article  CAS  Google Scholar 

  • Voigt DE, Brantley SL, Hennet RJC (1996) Chemical fixation of arsenic in contaminated soils. Appl Geochem 11:633–643

    Article  CAS  Google Scholar 

  • Walker SR, Jamieson HE, Lanzirotti A, Andrade CF, Hall GEM (2005) The speciation of arsenic in iron oxides in mine wastes from the Giant gold mine, NWT: application of synchrotron micro-XRD and micro-XANES at the grain scale. Can Mineral 43:1205–1224

    Article  CAS  Google Scholar 

  • Wang S, Mulligan CN (2008) Speciation and surface structure of inorganic arsenic in solid phases: a review. Environ Intl 34:867–879

    Article  CAS  Google Scholar 

  • Wanibuchi H, Salim EI, Kinoshita A, Shen J, Wei M, Morimura K, Yoshida K, Kuroda K, Endo G, Fukushima S (2004) Understanding arsenic carcinogenicity by the use of animal models. Toxicol Appl Pharmacol 198:366–376

    Article  CAS  Google Scholar 

  • Waychunas GA, Rea BA, Fuller CC, Davis JA (1993) Surface chemistry of ferrihydrite. I: EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta 57:2251–2269

    Article  CAS  Google Scholar 

  • Waychunas GA, Fuller CC, Rea BA, Davis JA (1996) Wide angle X-ray scattering (WAXS) study of “two-line” ferrihydrite structure: effect of arsenate sorption and counterion variation and comparison with EXAFS results. Geochim Cosmochim Acta 60:1765–1781

    Article  CAS  Google Scholar 

  • Williams M (2001) Arsenic in mine waters: an international study. Environ Geol 40:267–278

    Article  CAS  Google Scholar 

  • Yuan CG, Shi JB, He B, Liu JF, Liang LN, Jiang GB (2004) Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ Intl 30:769–783

    Article  CAS  Google Scholar 

  • Zhang W, Singh P, Paling E, Delides S (2004) Arsenic removal from contaminated water by natural iron ores. Miner Eng 17:517–524

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Armiento.

Additional information

Responsible editor: Galina Machulla

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreidie, N., Armiento, G., Cibin, G. et al. An integrated geochemical and mineralogical approach for the evaluation of arsenic mobility in mining soils. J Soils Sediments 11, 37–52 (2011). https://doi.org/10.1007/s11368-010-0274-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-010-0274-7

Keywords

Navigation