Skip to main content

Advertisement

Log in

Accounting for soil organic carbon role in land use contribution to climate change in agricultural LCA: which methods? Which impacts?

  • SUSTAINABLE FOOD PRODUCTION AND CONSUMPTION
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Soil organic carbon (SOC) plays a key role in soil functioning and in greenhouse gas exchange with the atmosphere. Land use and land use changes can critically affect SOC. However, despite various methodological developments, there is still no scientific consensus on the best method to assess the holistic impact of land use and land use change within LCA. The SOCLE project aimed to review how SOC contribution to climate change is accounted for in LCA and to test the feasibility and sensitivity of best methodological options.

Methods

In total, five crop products (annual/perennial, temperate/tropical) and two livestock products were investigated through 22 scenarios of land use changes (LUC) and agricultural land management changes (LMC). Three methods were applied: IPCC Tier 1-2 (2006), Müller-Wenk and Brandaõ (2010) and Levasseur et al. (2012). We also carried out a sensitivity analysis on key variables, notably carbon stocks, reference states, and regeneration times.

Results and discussion

The accounting for LUC and LMC influenced greatly the results on the climate change impact. Compared to the impact of other GHG emissions, (i) LUC impacts ranged from − 23 to + 1702% with the IPCC method and from − 5 to + 336% with the Müller-Wenk and Brandaõ method, and (ii) LMC impacts from − 130 to + 54% and from − 31 to + 11%, respectively. The sensitivity analyses stressed the critical influence of all methodological and data choices on final results.

Conclusions

Based on the project results, we recommend accounting systematically for the impact of LULUC on climate change by applying, a minima, the comprehensive IPCC Tier 1 approach (2006), which provides default factors for SOC accounting. Where available, case-specific data should be used (e.g., Tier 2) for SOC stocks but also C:N ratio in order to model the degressive impact over 90% of the time period needed to reach equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. ADEME is the French Environment and Energy Management Agency

  2. UNEP is the United Nations Environment Programme now known as UN Environment

  3. SETAC is the Society of Environmental Toxicology and Chemistry

References

  • Adhikari K, Hartemink AE (2016) Linking soils to ecosystem services — a global review. Geoderma 262:101–111

    CAS  Google Scholar 

  • Baker JM, Ochsner TE, Venterea RT, Griffis TJ (2007) Tillage and soil carbon sequestration—what do we really know? Agric Ecosyst Environ 118(1):1–5

  • Beloin-Saint-Pierre D, Levasseur A, Margni M, Blanc I (2017) Implementing a dynamic life cycle assessment methodology with a case study on domestic hot water production. J Ind Ecol 21(5):1128–1138

    CAS  Google Scholar 

  • Benoist A, Bessou C (2018) Soil organic carbon, climate change, and soil quality: a mapping of existing methods for LCA. http://agritrop.cirad.fr/582031/Detailed project report in French: https://www.ademe.fr/sites/default/files/assets/documents/rapport_de_revue_methodo_socle_final_2018.pdf (accessed 19 Sept 2019)

  • Benoist A, Cornillier C (2016) Towards a consensual method to assess climate change impacts from bio-based systems. http://agritrop.cirad.fr/580572/ (accessed 28 February 2019)

  • Bessou C, Chase LDC, Henson IE, Abdul-Manan AFN, Milà i Canals L et al (2014) Pilot application of PalmGHG, the roundtable on sustainable palm oil greenhouse gas calculator for oil palm products. J Clean Prod 73:136–145

    CAS  Google Scholar 

  • Bos U, Horn R, Beck T (2016) LANCA - characterization factors for life cycle impact assessment - Version 2.0. Stuttgart, Germany

  • Brandani CB, Abbruzzini TF, Williams S, Easter M, Pellegrino Cerri CE, Paustian K (2015) Simulation of management and soil interactions impacting SOC dynamics in sugarcane using the CENTURY Model. GCB Bioenergy 7:646–657

    Google Scholar 

  • Bright RM, Cherubini F, Strømman AH (2012) Climate impacts of bioenergy: inclusion of carbon cycle and albedo dynamics in life cycle impact assessment. Environ Impact Assess Rev 37:2–11

    Google Scholar 

  • BSI (2011) PAS2050: specification for the assessment of the life cycle greenhouse gas emissions of goods and services by The British Standards Institution. 45 pp

  • Cao V, Margni M, Favis BD, Deschênes L (2017) Choice of land reference situation in life cycle impact assessment. Int J Life Cycle Assess 22:1220–1231

    Google Scholar 

  • Corbeels M, Marchão RL, Neto MS, Ferreira EG, Madari BE et al (2016) Evidence of limited carbon sequestration in soils under no-tillage systems in the Cerrado of Brazil. Sci Rep 6:21450

    CAS  Google Scholar 

  • Cowie AL, Orr BJ, Castillo Sanchez VM, Chasek P, Crossman ND et al (2018) Land in balance: the scientific conceptual framework for land degradation neutrality. Environ Sci Pol 79:25–35

    Google Scholar 

  • Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, Clark JS, Classen AT, Dijkstra FA, Elberling B, Emmett BA, Estiarte M, Frey SD, Guo J, Harte J, Jiang L, Johnson BR, Kröel-Dulay G, Larsen KS, Laudon H, Lavallee JM, Luo Y, Lupascu M, Ma LN, Marhan S, Michelsen A, Mohan J, Niu S, Pendall E, Peñuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds LL, Schmidt IK, Sistla S, Sokol NW, Templer PH, Treseder KK, Welker JM, Bradford MA (2016) Quantifying global soil carbon losses in response to warming. Nature 540(7631):104–108

    CAS  Google Scholar 

  • de Vries W (2018) Soil carbon 4 per mille: a good initiative but let’s manage not only the soil but also the expectations: comment on Minasny et al. (2017). Geoderma 292:59–86

    Google Scholar 

  • Dijkman TJ, Basset-Mens C, Antón A, Núñez M (2018) LCA of food and agriculture. In: Hauschild MZ, Rosenbaum RK, Olsen SI (eds) Life cycle assessment: theory and practice. Springer International Publishing, Cham, pp 723–754

    Google Scholar 

  • Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69(9):1858–1868

    Google Scholar 

  • Duparque A, Dinh JL, Mary B (2013) AMG: a simple SOC balance model used in France for decision support. International workshop SOMpatic Rauischholtzhausern (Germany), November 20-22, 2013

  • Flynn HC, LM I Canals, Keller E, King H, Sim S et al (2012) Quantifying global greenhouse gas emissions from land-use change for crop production. Glob Chang Biol 18(5):1622–1635

  • Frank S, Havlík P, Soussana J-F, Levesque A, Valin H et al (2017) Reducing greenhouse gas emissions in agriculture without compromising food security? Environ Res Lett 12(10):105004. https://doi.org/10.1088/1748-9326/aa8c83

    Article  CAS  Google Scholar 

  • Fujisaki K (2014) Devenir des stocks de carbone organique des sols après déforestation et mise en culture : une analyse diachronique en contexte amazonien. Centre International d’Etudes Supérieures en Sciences Agronomiques (Montpellier SupAgro)

  • Garrigues E, Corson MS, Angers DA, van der Werf HMG, Walter C (2012) Soil quality in life cycle assessment: towards development of an indicator. Ecol Indic 18(0):434–442

  • Goglio P, Smith WN, Grant BB et al (2015) Accounting for soil carbon changes in agricultural life cycle assessment (LCA): A review. J Clen Prod 104:1–17

    Google Scholar 

  • International Reference Life Cycle Data System (ILCD) (2011) Handbook—recommendations for life cycle impact assessment in the European context. First edition November 2011. EUR 24571 EN. Luxemburg Publications Office of the European Union. 159p

  • IPBES (2018) Summary for policymakers of the assessment report on land degradation and restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES secretariat, Bonn

    Google Scholar 

  • IPCC (2006) Guidelines for national greenhouse gas inventories. Vol 4 Agriculture, Forestry and Other Land Use. WMO/UNEP. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html

  • IPCC (2007) Fourth Assessment Report. Climate change 2007 - synthesis report. WMO/UNEP. http://www.ipcc.ch/ipccreports/ar4-syr.htm

  • Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Soil quality: a concept, definition, and framework for evaluation. Soil Sci Soc Am J 61(1):4–10

    CAS  Google Scholar 

  • Khatri P, Jain S (2017) Environmental life cycle assessment of edible oils: a review of current knowledge and future research challenges. J Clean Prod 152:63–76

    Google Scholar 

  • Koellner T, de Baan L, Beck T, Brandão M, Civit B et al (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18(6):1188–1202

    Google Scholar 

  • Koponen K, Soimakallio S, Kline KL, Cowie A, Brandão M (2018) Quantifying the climate effects of bioenergy – choice of reference system. Renew Sust Energ Rev 81:2271–2280

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    CAS  Google Scholar 

  • Lal R (2010) Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. BioScience 60(9):708–721

    Google Scholar 

  • Levasseur A, Lesage P, Margni M, Brandão M, Samson S (2012) Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches. Climate Change 115(3–4):759–776

    CAS  Google Scholar 

  • Milà i Canals LM, Bauer C, Depestele J, Dubreuil A, Knuchel RF et al (2007a) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12(1):5–15

    Google Scholar 

  • Milà i Canals L, Romanyà J, Cowell SJ (2007b) Method for assessing impacts on life support functions (LSF) related to the use of “fertile land” in life cycle assessment (LCA). J Clean Prod 15(15):1426–1440

    Google Scholar 

  • Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D et al (2017) Soil carbon 4 per mille. Geoderma 292:59–86

    Google Scholar 

  • Montanarella L, Pennock DJ, McKenzie N, Badraoui M, Chude V et al (2016) World’s soils are under threat. Soil 2(1):79–82

    CAS  Google Scholar 

  • Müller-Wenk R, Brandão M (2010) Climatic impact of land use in LCA—carbon transfers between vegetation/soil and air. Int J Life Cycle Assess 15(2):172–182

    Google Scholar 

  • Muñoz I, Campra P, Fernández-Alba AR (2010) Including CO2-emission equivalence of changes in land surface albedo in life cycle assessment. Methodology and case study on greenhouse agriculture. Int J Life Cycle Assess 15:672–681

    Google Scholar 

  • Notarnicola B, Sala S, Anton A, McLaren SJ, Saouter E et al (2017) The role of life cycle assessment in supporting sustainable agri-food systems: a review of the challenges. J Clean Prod 140:399–409

    Google Scholar 

  • Novaes RML, Pazianotto RAAA, Brandão M, Alves BJR, May A et al (2017) Estimating 20-year land-use change and derived CO2 emissions associated with crops, pasture and forestry in Brazil and each of its 27 states. Glob Chang Biol 23(9):3716–3728

    Google Scholar 

  • Núñez M, Antón A, Muñoz P, Rieradevall J (2013) Inclusion of soil erosion impacts in life cycle assessment on a global scale: application to energy crops in Spain. Int J Life Cycle Assess 18(4):755–767

    Google Scholar 

  • Oberholzer H-R, Freiermuth Knuchel R, Weisskopf P, Gaillard G (2012) A novel method for soil quality in life cycle assessment using several soil indicators. Agron Sustain Dev 32(3):639–649

    Google Scholar 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature 532(7597):49–57

    CAS  Google Scholar 

  • Plassmann K, Norton A, Attarzadeh N, Jensen MP, Brenton P et al (2010) Methodological complexities of product carbon footprinting: a sensitivity analysis of key variables in a developing country context. Environ Sci Pol 13(5):393–404

    CAS  Google Scholar 

  • Rumpel C, Amiraslani F, Chenu C, Garcia Cardenas M, Kaonga M, Koutika LS, Ladha J, Madari B, Shirato Y, Smith P, Soudi B, Soussana JF, Whitehead D, Wollenberg E (2019) The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio.:1–11. https://doi.org/10.1007/s13280-019-01165-2

  • Saby NPA, Brus DJ, Arrouays D (2014) Comparison of the several methods to estimate of the sampling variance from a systematic random sampling: application to the French soil monitoring network data. In: Jeannée N, Romary T (eds) GeoEnv, Paris

  • Shibu ME, Leffelaar PA, Van Keulen H, Aggarwal PK (2006) Quantitative description of soil organic matter dynamics-A review of approaches with reference to rice-based cropping systems

  • Shimako AH, Tiruta-Barna L, Bisinella de Faria AB, Ahmadi A, Spérandio M (2018) Sensitivity analysis of temporal parameters in a dynamic LCA framework. Sci Total Environ 624:1250–1262

    CAS  Google Scholar 

  • Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ et al (2015) Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil Discuss 2(1):537–586

    Google Scholar 

  • Smith P, Davis SJ, Creutzig F, Fuss S, Minx J et al (2016) Biophysical and economic limits to negative CO2 emissions. Nat Clim Chang 6(1):42–50

    CAS  Google Scholar 

  • Sommer R, Bossio D (2014) Dynamics and climate change mitigation potential of soil organic carbon sequestration. J Environ Manag 144:83–87

    CAS  Google Scholar 

  • Soussana J-F, Lutfalla S, Ehrhardt F, Rosenstock T, Lamanna C et al (2019) Matching policy and science: Rationale for the ‘4 per 1000 - soils for food security and climate’ initiative. Soil Tillage Res 188:3–15

    Google Scholar 

  • Susca T (2012) Enhancement of life cycle assessment (LCA) methodology to include the effect of surface albedo on climate change: Comparing black and white roofs. Environ Pollut 163:48–54

    CAS  Google Scholar 

  • Tuomisto HL, Saouter E, Pant R (2015) Default approaches for cross-cutting issues for the cattle related product environmental footprint pilots. European Commission, Joint Research Center. Italy. 21 pp

  • Vidal Legaz B, Maia De Souza D, Teixeira RFM, Antón A, Putman B et al (2017) Soil quality, properties, and functions in life cycle assessment: an evaluation of models. J Clean Prod 140(Part 2):502–515

    Google Scholar 

  • Zomer RJ, Bossio DA, Sommer R, Verchot LV (2017) Global sequestration potential of increased organic carbon in cropland soils. Sci Rep 7(1):1–8

    CAS  Google Scholar 

Download references

Acknowledgments

We warmly thank the reviewers for their thorough reviews and constructive comments that enable to improve the paper greatly.

Funding

The SOCLE project, 2014-2017, was financed by ADEME, the French Environment & Energy Management Agency under the contract number 1360C0097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Bessou.

Additional information

Responsible editor: Brad G. Ridoutt

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessou, C., Tailleur, A., Godard, C. et al. Accounting for soil organic carbon role in land use contribution to climate change in agricultural LCA: which methods? Which impacts?. Int J Life Cycle Assess 25, 1217–1230 (2020). https://doi.org/10.1007/s11367-019-01713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-019-01713-8

Keywords

Navigation