Skip to main content

Advertisement

Log in

Verifying the effectiveness of environmental performance improvement actions in the chain of production of an agrochemical produced in Brazil

  • LIFE CYCLE ASSESSMENT: A TOOL FOR INNOVATION IN LATIN AMERICA
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

A Brazilian agrochemical company agreed to conduct an initiative to further evaluate the environmental impact caused by its product SC50. This agrochemical is obtained from thiophanate-methyl, an active ingredient produced in Brazil as well as in Japan, where another industrial plant of the same corporation is located. The initiative evaluated the environmental performance of the SC50 life cycle so as to provide the company’s private management with information to influence stakeholders in the sector.

Methods

The working method comprised five steps. Step 1 established the impact profile associated to the SC50 life cycle. The diagnosis was obtained by LCA from a ‘cradle-to-grave’ approach. Step 2 identified the stages causing significant environmental impacts throughout the entire life cycle. In Step 3, improvement actions were proposed in order to mitigate, reduce, or even minimize the effects detected. Step 4 comprised the modeling, in which specific scenarios and their environmental impacts were analyzed. The synergistic effect was checked by successive additions of improvement actions, characterizing each scenario. Step 5 analyzed the results, comparing impact profiles of each scenario with the original diagnosis (as a baseline scenario) and verifying the individual effect of each action.

Results and discussion

The results indicate relevant contributions of the dispersion from the SC50 life cycle in terms of global warming, terrestrial ecotoxicity, human toxicity, and eutrophication. Regarding to the manufacture, the use of diesel has great influence in the impacts of SC50, and its performance as eutrophication is conditioned to the low efficiency of the wastewater treatment. While the company decided not to implement improvements in the dispersion stage fearing market losses, five alternatives based on cleaner production principles were proposed to improve performance: to review the instrumentation systems in the plant, to adjust wastewater treatment, to stop importing thiophanate-methyl from Japan, to install an energy cogeneration system, and to substitute renewable glycerin with a fossil counterpart. All scenarios led to improvements from baseline.

Conclusions

The use of LCA determined the impact profile associated to SC50 in soybean pest control. Because of strategic reasons, the company decided not to propose improvements in the most significant stage of this life cycle. Among the improvements, we highlight the replacement of imported thiophanate-methyl by a Brazilian equivalent and the installation of a combined cycle for energy recovery. For both these cases, however, the appropriate organizational measures must be taken before implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ABIQUIM (Brazilian Chemical Industry Association) (2011) Anuário da Indústria Química Brasileira: Ed 2011. (Portuguese) São Paulo

  • Althaus HJ, Chudacoff M, Hischier R, Jungbluth N, Osses M, Primas A (2007) Life cycle inventories of chemicals. Ecoinvent report no. 8. V2.0. EMPA Dübendorf. Swiss Centre for Life cycle Inventories, Dübendorf, Available at: www.ecoinvent.org

    Google Scholar 

  • Berthoud A, Maupu P, Huet C, Poupart A (2011) Assessing freshwater ecotoxicity of agricultural products in life cycle assessment (LCA): a case study of wheat using French agricultural practices databases and USEtox model. Int J Life Cycle Assess 16:841–847

    Article  CAS  Google Scholar 

  • Capriglione T, De Iorio S, Gay F et al (2011) Genotoxic effects of the fungicide thiophanate-methyl on Podarcis sicula assessed by micronucleus test, comet assay and chromosome analysis. Ecotoxicology 20:885–891

    Article  CAS  Google Scholar 

  • Cardone A (2012) Testicular toxicity of methyl thiophanate in the Italian wall lizard (Podacris sicula): morphological and molecular evaluation. Ecotoxicology 21:512–523

    Article  CAS  Google Scholar 

  • ChemNet (Global Chemical Network) (2011) Thiophanate-Methyl CAS 23564-05-8. http://www.chemnet.com/cas/en/23564-05-8/THIOPHANATE-METHYL.html. Accessed: Nov 10 2011

  • Curran M, Scientific Applications International Corporation (SAIC) (2006) Life cycle assessment: principles and practice. National Risk Management Research Laboratory; Office of Research and Development; US Environmental Protection Agency, Cincinnati, OH. EPA/600/R-06/060

  • EMBRAPA (Brazilian Agricultural Research Corporation) (2006) Tecnologias de produção de soja – região central do Brasil. Londrina – PR ISSN 1677-8499 (Portuguese)

  • EMBRAPA (Brazilian Agricultural Research Corporation) (2011) Tecnologias de Produção de Soja - Região Central do Brasil 2012 e 2013. Londrina – PR. ISSN 2176-2902. (Portuguese)

  • EPE (Energy Research Enterprise) (2011) Brazilian energy balance 2011 year 2010. CDU 620.9:553.04(81). Ministry of Mines and Energy. (Portuguese). Brasilia

  • Faist EM, Heck T, Jungbluth N, Tuchschmid M (2007) Erdgas. In: Dones R (ed) Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. Final ecoinvent report No. 6-V. Dübendorf: Paul Scherrer Institut. Swiss Centre for Life cycle Inventories, Villigen. Available at: www.ecoinvent.org

  • Fantke P, Gillespie BW, Juraske R, Jolliet O (2014) Estimating half-life for pesticide dissipation from plants. Environ Sci Technol 48:8588–8602

    Article  CAS  Google Scholar 

  • FAO (2005) Plaguicidas: Equilibrio entre la protección vegetal y el uso responsable. División de Producción y Protección Vegetal: ftp://ftp.fao.org/docrep/fao/011/i0765s/i0765s16.pdf (Spanish). Accessed Nov 15 2010

  • FAO (2010) The state of food insecurity in the world, 2010: addressing food security in protracted crises. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/docrep/013/i1683e/i1683e00.htm Accessed Oct 20 2010

  • Garcia S, Mieller T (2010) Visión general de la producción y aplicación de bioplaguicidas en México. Soc Rural Prod y Medio Ambiente 10(2):37–63, Spanish

    Google Scholar 

  • Garthwaite DG, Thomas MR (2003) Pesticide usage survey report: protected crops (edible & ornamental) in Great Britain. Pesticide Usage Survey, Central Science Laboratory, York

    Google Scholar 

  • Geisler G, Hellweg S, Hofstetter TB, Hungerbuehler K (2005) Life cycle assessment in pesticide product development: methods and case study on two plant-growth regulators from different product generations. Environ Sci Technol 39(7):2406–2413

    Article  CAS  Google Scholar 

  • Guinée JB, Gorree M, Heijungs R et al (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, ISBN 1-4020-0228-9, Dordrecht, pp 2002–692

  • Hellweg S, Canals LM (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 344:1109–1113

    Article  CAS  Google Scholar 

  • Henning AA (2004) Patologia e Tratamento de Sementes: noções gerais. EMBRAPA-CNPSo. Londrina – PR. 43 p. ISSN 1516-781X (Portuguese)

  • Hirooka T, Ishii H (2013) Chemical control of plant diseases. J Gen Plant Pathol 79:390–401

    Article  CAS  Google Scholar 

  • Humbert S, Margni M, Charles R, Torres Salazar OM, Quirós AL, Jolliet O (2007) Toxicity assessment of the main pesticides used in Costa Rica. Agric Ecosyst Environ 118(1–4):183–190

    Article  CAS  Google Scholar 

  • Hunter S, Helling R, Shiang D (2012) Integration of LCA and life cycle thinking within the themes of sustainable chemistry & engineering. In: Curran MA (ed) Life cycle assessment handbook. Wiley, Hoboken, pp 369–390

    Chapter  Google Scholar 

  • IEA (2013) Energy balances of OECD countries. Energy Association. Paris p 554. ISBN 978-92-64-20300-6

  • ISO (2006) ISO 14044: environmental management—life cycle assessment—requirements and guidelines. ISO, Geneva

    Google Scholar 

  • Jungbluth N (2007) Erdöl. In Done R (ed) Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. Ecoinvent report No. 6-IV, Swiss Centre for Life cycle Inventories, Duberdorf, CH Available at: www.ecoinvent.org

  • Jungbluth N, Chudacoff M, Dauriat A et al (2007) Life cycle inventories of Bioenergy. Ecoinvent report no. 17. Swiss Centre for Life cycle Inventories, Dübendorf, Available at: www.ecoinvent.org

    Google Scholar 

  • Juraske R (2007) Advances in life cycle impact assessment of pesticides: methodological improvements and experimental studies. Doctoral dissertation, Universitat Rovira i Virgili, Tarragon. www.etseq.urv.es/doctorat/index/…/abstract_ronnie_esp.pdf. Accessed June 11 2010

  • Kägi T, Bockstaller C, Gaillard G, Hayer F, Mamy L, Strassemeyer J (2009) Multicriteria comparison of RA and LCA toxicity methods with focus on pesticide application strategies. In: Nemecek T, Gaillard G (eds) Proceedings of the 6th International Conference on LCA in the Agri-Food Sector – Towards a sustainable management of the food chain, November 12–14, 2008, Zurich, Switzerland. Agroscope Reckenholz-Tänikon Research Station ART, pp 169–177

  • Köck-Schulmeyer M, Villagrasa M, Alda ML, Céspedes-Sánchez R, Ventura F, Barceló D (2013) Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Sci Total Environ 458–460:466–476

    Article  Google Scholar 

  • Levitan L (2000) “How to” and “why”: assessing the enviro-social impacts of pesticides. Crop Prot 19(8):629–636

    Article  Google Scholar 

  • Mamy L, Gabrielle B, Barriuso E (2007) Compared environmental balances of broad-spectrum and selective herbicides. In Proceedings of the XIII Symposium in Pesticide Chemistry, 3–6 September 2007, Piacenza, pp 332–339

  • Nemecek T, Kägi T (2007) Life cycle inventories of Swiss and European Agricultural Production System – Final report Ecoinvent v2.0 n. 15. Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories, Zurich and Dübendorf, CH, retrieved from www.ecoinvent.org

  • Perrin A, Basset-Mens C, Gabrielle B (2014) Life cycle assessment of vegetable products: a review focusing on cropping systems diversity and the estimation of field emissions. Int J Life Cycle Assess 19:1247–1263

    Article  CAS  Google Scholar 

  • Reus J, Leenderste P, Bockstaller C et al (2002) Comparing and evaluating eight pesticide environnemental risk indicators developed in Europe and recommendations for future use. Agric Ecosyst Environ 90(2):177–187

    Article  Google Scholar 

  • Rosembaum RK, Anton A, Bengoa X et al (2015) The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA. Int J Life Cycle Assess 20:765–776

    Article  Google Scholar 

  • Rosenbaum RK, Huijbregts MAJ, Henderson AD, Margni M, McKone TE, van de Meent D, Hauschild MZ, Shaked S, Li DS, Gold LS, Jolliet O (2011) USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int J Life Cycle Assess 16(8):710–727

    Article  CAS  Google Scholar 

  • Sattler A, Faganello A (2004) Semeadura – efeito do tratamento de sementes de soja (Glycine max (L.) Merrill) sobre a vazão do mecanismo dosador. Circular Técnica n°. 16 – EMBRAPA (Brazilian Agricultural Research Corporation), Passo Fundo RS, Brazil. p 11. ISSN 1518-6490 (Portuguese)

  • SeaRates (2010) Distance and Time [map]. Scale undetermined; generated by SeaRates LP; using Google Maps. 2010. www.searates.com/reference/portdistance Accessed: Sept 14 2010

  • Sujii ER, Pires CSS, Schmidt FGV, Armando MS, Borges MM, Carneiro RG, Valle JCV (2002) Controle Biológico de Insetos-Praga na Soja Orgânica do Distrito Federal. Cadernos de Ciência Tecnologia Brasília 19(2):299–312, maio/ago (Portuguese)

    Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2(3):194–208

    Article  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (2005) Registration eligibility decision: thiophanate-methyl. OPPTS GLN 830.1620 – Starting materials and manufacturing process. USEPA, Washington

    Google Scholar 

  • Vallejo A (2004) Utilización del Análisis del ciclo de vida en la evaluación del impacto ambiental del cultivo bajo invernadero mediterráneo. Doctoral thesis, Universitat Politècnia de Catalunya, Barcelona. http://www.tesisenxarxa.net/TDX-0420104-100039/index.html. (Spanish) Accessed Nov 3 2010

  • Volf MR, Sichocki D, Maggioni EJ, Ribeiro JF, Mayer MC, Feller DO (2012) Association of a different potassium silicate fungicide control channel in target in the soybean V Brazilian Soy Congress http://ainfo.cnptia.embrapa.br/digital/bitstream/item/74154/1/200-s250.pdf (Portuguese) Accessed Sept 20 2015

  • Watanabe I (1986) Thiophanate-methyl – Description of beginning materials and manufacturing process: study no. TL-6182. Unpublished study prepared by Nippon Soda Co., Ltd., Takaoka Laboratory, p 13

  • Zhu Z, Wang K, Zhang B (2014) Applying a network data envelopment analysis model to quantify the eco-efficiency of products: a case study of pesticides. J Clean Prod 69:67–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Kulay.

Additional information

Responsible editor: Ian Vázquez-Rowe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulay, L., Gripp, V.S., Nogueira, A.R. et al. Verifying the effectiveness of environmental performance improvement actions in the chain of production of an agrochemical produced in Brazil. Int J Life Cycle Assess 22, 644–655 (2017). https://doi.org/10.1007/s11367-016-1108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-016-1108-7

Keywords

Navigation