Skip to main content

Advertisement

Log in

LCA in architectural design—a parametric approach

  • BUILDING COMPONENTS AND BUILDINGS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Life cycle assessment (LCA) has not been widely applied in the building design process because it is perceived to be complex and time-consuming. There is a high demand for simplified approaches that architects can use without detailed knowledge of LCA. This paper presents a parametric LCA approach, which allows architects to efficiently reduce the environmental impact of building designs.

Methods

First, the requirements for design-integrated LCA are analyzed. Then, assumptions to simplify the required data input are made and a parametric model is established. The model parametrizes all input, including building geometry, materials, and boundary conditions, and calculates the LCA in real time. The parametric approach possesses the advantage that input parameters can be adjusted easily and quickly. The architect has two options to improve the design: either through manually changing geometry, building materials, and building services, or through the use of an optimization solver. The parametric model was implemented in a parametric design software and applied using two cases: (a) the design of a new multi-residential building, and (b) retrofitting of a single-family house.

Results and discussion

We have successfully demonstrated the capability of the approach to find a solution with minimum environmental impact for both examples. In the first example, the parametric method is used to manually compare geometric design variants. The LCA is calculated based on assumptions for materials and building services. In the second example, evolutionary algorithms are employed to find the optimum combination of insulation material, heating system, and windows for retrofitting. We find that there is not one optimum insulation thickness, but many optima, depending on the individual boundary conditions and the chosen environmental indicator.

Conclusions

By incorporating a simplified LCA into the design process, the additional effort of performing LCA is minimized. The parametric approach allows the architect to focus on his main task of designing the building and finally makes LCA practically useful for design optimization. In the future, further performance analysis capabilities such as life cycle costing can also be integrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

I :

Environmental impact

ED :

Energy demand (kWh)

M :

Mass (kg)

R :

Number of replacements

RSP :

Reference service period (of the building) (a)

RSL :

Reference service life (of a building component) (a)

IF :

Environmental impact factor

PF :

Performance factor of a building service

PET :

Total primary energy (MJ)

PERT :

Total renewable primary energy (MJ)

PENRT :

Total non-renewable primary energy (MJ)

GWP :

Global warming potential for a time horizon of 100 years (kg CO2-eqv.)

EP :

Eutrophication potential (kg R11-eqv.)

AP :

Acidification potential (kg SO2-eqv.)

ODP :

Ozone layer depletion potential (kg PO4 3−-eqv.)

POCP :

Photochemical ozone creation potential (kg C2H4-eqv.)

ADPE :

Abiotic resource depletion potential for elements (kg Sb-eqv.)

LC :

Life cycle

O :

Operational

E :

Embodied

heat :

Heating

env :

Building envelope

pri :

Primary structure

References

  • Antón LÁ, Díaz J (2014) Integration of LCA and BIM for sustainable construction. Int J Soc Manag Econ Bus Eng 8:1345–1349

    Google Scholar 

  • Robert McNeel & Associates (2015) Rhinoceros3D. Available at: https://www.rhino3d.com/ [Accessed August 8, 2015]

  • Aurélio M, Benetto E, Koster D (2011) Environmental life cycle assessment and optimization of buildings. In LCM 2011

  • Baitz M, Albrecht S, Brauner E, Broadbent C, Castellan G, Conrath P, Fava J, Finkbeiner M, Fischer M, i Palmer PF, Krinke S, Leroy C, Loebel O, McKeown P, Mersiowsky I, Möginger B, Pfaadt M, Rebitzer G, Rother E, Ruhland K, Schanssema A, Tikana L (2012) LCA’s theory and practice: like ebony and ivory living in perfect harmony? Int J Life Cycle Assess 18(1):5–13

  • Basbagill J, Flager F, Lepech M, Fischer M (2013) Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Build Environ 60:81–92

  • Bates R, Carlisle S, Faircloth B, Welch R (2013) Quantifying the Embodied Environmental Impact of Building Materials During Design: A Building Information Modeling Based Methodology. In PLEA. Munich, pp 1–6

  • BauO Bln (2011) Landesbauordnung Berlin, Germany. Available at: http://www.stadtentwicklung.berlin.de/service/gesetzestexte/de/download/bauen/BauOBln.pdf [Accessed August 8, 2015]

  • BBSR (2014) eLCA. Available at: www.bauteileditor.de [Accessed August 8, 2015]

  • BBSR (2015a) ökobau.dat. Bundesinstitut für Bau-, Stadt- und Raumforschung Available at: http://www.nachhaltigesbauen.de/baustoff-und-gebaeudedaten/oekobaudat.html [Accessed August 8, 2015]

  • BBSR (2015b) BNB system. Bundesinstitut für Bau-, Stadt- und Raumforschung. Available at: https://www.bnb-nachhaltigesbauen.de/bewertungssystem/bnb-bewertungsmethodik.html [Accessed April 4, 2015]

  • Bigalke U, Discher H, Lukas H, Zeng Y, Bensmann K, Stolte C (2012) Der dena-Gebäudereport 2012. Statistiken und Analysen zur Energieeffizienz im Gebäudebestand

  • Bundesgesetzblatt (2013). Verordnung über energiesparenden Wärmeschutz und energiesparender Anlagentechnik bei Gebäuden - EnEV, Deutschland

  • CEN/TC 350 (2012) DIN EN 15978: Nachhaltigkeit von Bauwerken – Bewertung der umweltbezogenen Qualität von Gebäuden. , pp 1–62

  • Collinge WO, Landis AE, Jones AK, Schaefer La, Bilec MM (2013) Dynamic life cycle assessment: framework and application to an institutional building. Int J Life Cycle Assess 18(3):538–552

  • Davis D (2013) Modelled on Software Engineering : Flexible Parametric Models in the Practice of Architecture. RMIT University. Available at: http://www.danieldavis.com/papers/danieldavis_thesis.pdf

  • DGNB (2015) DGNB system. Available at: http://www.dgnb-system.de/en/ [Accessed April 4, 2015]

  • DIN (2011) DIN V 18599-2 Energetische Bewertung von Gebäuden - Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwasser und Beleuchtung - Teil 2: Nutzenergiebedarf für Heizen und Kühlen von Gebäudezonen, p111

  • DOE (2015) EnergyPlus V8.3. U.S. Department of Energy. Available at: http://apps1.eere.energy.gov/buildings/energyplus/ [Accessed April 4, 2015]

  • Ekkerlein C (2004) Ökologische Bilanzierung von Gebäuden in frühen Planungsphasen auf Basis der Produktmodellierung. Technische Universität München

  • El Khouli S, John V, Zeumer M (2014) Nachhaltig Konstruieren Detail Green, Institut für Internationale Architektur-Dokumentation

  • EnEV (2013) Energieeinsparverordnung - Nichtamtliche Lesefassung zur Zweiten Verordnung zur Änderung der Energieeinsparverordnung vom 18. November 2013, pp 1–90

  • EU (2010) DIRECTIVE 2010/31/EU on the energy performance of buildings, Available at: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0031&from=EN [Accessed August 2, 2015]

  • Flager F, Basbagill J, Lepech M, Fischer M (2012) Multi-objective building envelope optimization for life-cycle cost and global warming potential. In eWork and eBusiness in Architecture, Engineering and Construction (pp. 193–200). CRC Press. doi:10.1201/b12516-32

  • Floery S (2015) Goat. Available at: http://www.rechenraum.com/en/goat/overview.html [Accessed March 3, 2015]

  • Frenzel C, Hiller M (2014) TRNSYSLIZARD – Open Source Tool Für Rhinocerus – Grasshopper. In Fifth German-Austrian IBPSA Conference, pp 490–496

  • Fuchs M, Hartmann F, Henrich J, Wagner C, Zeumer M (2013) SNAP Systematik für Nachhaltigkeitsanforderungen in Planungswettbewerben - Endbericht. Berlin

  • Heeren N, Mutel CL, Steubing B, Ostermeyer Y, Wallbaum H, Hellweg S (2015) Environmental Impact of Buildings—What Matters? Environ Sci Technol 49(16):9832–9841. Available at: http://pubs.acs.org/doi/abs/10.1021/acs.est.5b01735

  • Hegger M et al (2007) Energie Atlas: Nachhaltige Architektur. Birkhäuser, Basel

    Book  Google Scholar 

  • Hildebrand L (2014) Strategic investment of embodied energy during the architectural planning process. ISBN 9461863268

  • Hollberg A, Ruth J (2014) A Parametric Life Cycle Assessment Model for Facade Optimization. In Building Simulation and Optimization. London

  • Hollberg A et al (2016) Application of a parametric real-time LCA tool in students’ design projects. In Sustainable Built Environment. Hamburg

  • Jakubiec JA, Reinhart CF (2011) Diva 2.0: Integrating daylight and thermal simulations using Rhinoceros 3D, Daysim and EnergyPlus. In Proceedings of IBPSA. Sydney, Australia

  • Johnson SG (2010) The NLopt nonlinear-optimization package. Available at: http://ab-initio.mit.edu/nlopt [Accessed March 3, 2015]

  • Kaelo P, Ali MM (2006) Some variants of the controlled random search algorithm for global optimization. J Optimiz Theory App 130(2):253–264

    Article  Google Scholar 

  • Kellenberger D, Althaus H-J (2009) Relevance of simplifications in LCA of building components. Build Environ 44(4):818–825

    Article  Google Scholar 

  • Klüber N, Hollberg A, Ruth J (2014) Life cycle optimized application of renewable raw materials for retrofitting measures. In: World Sustainable Building. Barcelona

  • Lasvaux S, Gantner J (2013) Towards a new generation of building LCA tools adapted to the building design process and to the user needs? In: Sustainable Building. Graz, pp 406–417

  • Lasvaux S, Gantner J, Saunders T (2012) Requirements for building LCA tool developers, Available at: http://www.eebguide.eu/eebblog/wp-content/uploads/2012/12/D-4.3.-Requirements-for-Building-LCA-tool-designer.pdf [Accessed August 8, 2015]

  • Lichtenheld T, Hollberg A, Klüber N (2015) Echtzeitenergieanalyse für den parametrischen Gebäudeentwurf. In Bauphysiktage Kaiserslautern. Kaiserslautern: Technische Universität Kaiserslautern

  • Lützkendorf T et al (2015) Net-zero buildings: incorporating embodied impacts. Build Res Inf 43(1):62–81

    Article  Google Scholar 

  • McLeod R, Mead K. Standen M (2015) Passivhaus primer: Designer’s guide, Available at: http://www.passivhaus.org.uk/filelibrary/Primers/KN4430_Passivhaus_Designers_Guide_WEB.pdf [Accessed August 8, 2015]

  • Nembrini J, Samberger S, Labelle G (2014) Parametric scripting for early design performance simulation. Energ Build 68(PART C):786–798

  • Neuberg, F., (2004) Ein Softwarekonzept zur Internet-basierten Simulation des Ressourcenbedarfs von Bauwerken. Technische Universität München

  • Ostermeyer Y, Wallbaum H, Reuter F (2013) Multidimensional Pareto optimization as an approach for site-specific building refurbishment solutions applicable for life cycle sustainability assessment. Int J Life Cycle Assess 18(9):1762–1779

    Article  Google Scholar 

  • Passer A, Kreiner H, Maydl P (2012) Assessment of the environmental performance of buildings: a critical evaluation of the influence of technical building equipment on residential buildings. Int J Life Cycle Assess 17(9):1116–1130

    Article  Google Scholar 

  • Passer A, Lasvaux S, Allacker K, De Lathauwer D, Spirinckx C, Wittstock B, Kellenberger D, Gschösser F, Wall J, Wallbaum H (2015) Environmental product declarations entering the building sector: critical reflections based on 5 to 10 years experience in different European countries. Int J Life Cycle Assess 20(9):1199–1212

  • Rittel HW, Reuter WD (1992) Planen, Entwerfen, Design

  • Roudsari MS, Smith A, Gill G (2013) Ladybug: A parametric Environmental Plugin for Grasshopper to held designers environmentally conscious design. In: Building Simulation (IBPSA). Chambéry, France, p 8

  • Rutten, D., 2015. Grasshopper3D. Available at: http://www.grasshopper3d.com/[Accessed November 11, 2015]

  • Seo S, Tucker S, Newton P (2007) Automated material selection and environmental assessment in the context of 3D building modelling. J Green Build 2(2):51–61

    Article  Google Scholar 

  • Szalay A, Zöld Z (2007) What is missing from the concept of the new European Building Directive? Build Environ 42:1761–1769

    Article  Google Scholar 

  • Szalay Z, Váraljai E, Csík Á, Csoknyai T (2014) Life Cycle Based Optimization of Building Design. In: World Sustainable Building. Barcelona, pp 17–23

  • TRNSYS (2015) TRNSYS. Thermal Energy System Specialists, LLC. Available at: Available at: http://www.trnsys.com/ [Accessed April 4, 2015]

  • UNEP SBCI (2009) Buildings and Climate Change Summary for Decision-Makers

  • Weißenberger M, Jensch W, Lang W (2014) The convergence of life cycle assessment and nearly zero-energy buildings: the case of Germany. Energ Build 76:551–557

    Article  Google Scholar 

  • Wittstock B, Albrecht S, Makishi Colodel C, Lindner JP, Hauser G, Sedlbauer K (2009) Gebäude aus Lebenszyklusperspektive − Ökobilanzen im Bauwesen. Bauphysik, 31

  • Wittstock B et al (2012) EeBGuide Guidance Document Part B: BUILDINGS, Available at: http://www.eebguide.eu/eebblog/wp-content/uploads/2012/10/EeBGuide-B-FINAL-PR_2012-10-29.pdf\npapers2://publication/uuid/08A1A363-8E01-4CBB-B710-4ADBDFB14EBB

  • Zabalza Bribián I, Aranda Usón A, Scarpellini S (2009) Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a complement for building certification. Build Environ 44(12):2510–2520

    Article  Google Scholar 

Download references

Acknowledgments

This study was carried out as part of the research project FOGEB, funded by the Thuringian Ministry for Economics, Labour and Technology and the European Social Funds (ESF), and the project “Integrated Life Cycle Optimization,” funded by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety through the research initiative ZukunftBau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Hollberg.

Additional information

Responsible editor: Holger Wallbaum

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hollberg, A., Ruth, J. LCA in architectural design—a parametric approach. Int J Life Cycle Assess 21, 943–960 (2016). https://doi.org/10.1007/s11367-016-1065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-016-1065-1

Keywords

Navigation