Skip to main content
Log in

Di-(2-ethylhexyl) phthalate exposure induces premature testicular senescence by disrupting mitochondrial respiratory chain through STAT5B-mitoSTAT3 in Leydig cell

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Di-(2-ethylhexyl) phthalate (DEHP), a prevalent plasticizer, is known to have endocrine-disrupting effects on males and cause reproductive toxicity. There were causal effects of DEHP on testosterone levels in the real world by Mendelian randomization analysis. Exposure to DEHP during the preadult stage might lead to premature testicular senescence, but the mechanisms responsible for this have yet to be determined. In this study, we administered DEHP (300 mg/kg/day) to male C57BL/6 mice from postnatal days 21 to 49. The mice were kept for 6 months without DEHP. RNA sequencing was conducted on testicular tissue at PNM6. The results indicated that DEHP hindered testicular development, lowered serum testosterone levels in male mice, and induced premature testicular senescence. TM3 Leydig cells were exposed to 300 μM of mono(2-ethylhexyl) phthalate (MEHP), the bioactive metabolite of DEHP, for 72 h. The results also found that DEHP/MEHP induced senescence in vivo and in vitro. The mitochondrial respiratory chain was disrupted in Leydig cells. The expression and stability of STAT5B were elevated by MEHP treatment in TM3 cells. Furthermore, p-ERK1/2 was significantly decreased by STAT5B, and mitochondria-STAT3 (p-STAT3 ser727) was significantly decreased due to the decrease of p-ERK1/2. Additionally, the senescence level of TM3 cells was decreased and treated with 5 mM NAC for 1 h after MEHP treatment. In conclusion, these findings provided a novel mechanistic understanding of Leydig cells by disrupting the mitochondrial respiratory chain through STAT5B-mitoSTAT3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data supporting the results of this study are available from the corresponding author upon any reasonable request.

Abbreviations

DEHP :

Di-(2-ethylhexyl) phthalate

MEHP :

Mono(2-ethylhexyl) phthalate

TD :

Testosterone deficiency

ROS :

Reactive oxygen species

RNS :

Reactive nitrogen species

MR :

Mendelian randomization

IV :

Instrumental variable

SNPs :

Single nucleotide polymorphisms

BAT :

Bioavailable testosterone

SHBG :

Sex hormone-binding globulin

DMRs :

Differentially methylated regions

LD :

Linkage disequilibrium

PND :

Postnatal day

PNM :

Postnatal month

DEGs :

Differentially expressed genes

AGD :

Anogenital distance

IHC :

Immunohistochemical

IF :

Immunofluorescence

DEGs :

Differentially expressed genes

FDR :

False discovery rate

GO :

Gene Ontology

GSEA :

Gene set enrichment analysis

CS :

Cell senescence

OXPHOS :

Oxidative phosphorylation

ssGSEA :

Single-sample gene set enrichment analysis

SAHF :

Senescence-associated heterochromatin foci

OCR :

Oxygen consumption rate

EDI :

Estimated daily intake

COIP :

Co-immunoprecipitation

CESTA :

Cellular thermal shift assay

NAC :

N-acetyl-cysteine

References

  1. Salter CA, Mulhall JP. Guideline of guidelines: testosterone therapy for testosterone deficiency. BJU Int. 2019;124:722–9. https://doi.org/10.1111/bju.14899.

    Article  PubMed  Google Scholar 

  2. Kelly DM, Jones TH. Testosterone: a metabolic hormone in health and disease. J Endocrinol. 2013;217:R25-45. https://doi.org/10.1530/JOE-12-0455.

    Article  CAS  PubMed  Google Scholar 

  3. Mulhall JP, Trost LW, Brannigan RE, Kurtz EG, Redmon JB, Chiles KA, et al. Evaluation and management of testosterone deficiency: AUA guideline. J Urol. 2018;200:423–32. https://doi.org/10.1016/j.juro.2018.03.115.

    Article  PubMed  Google Scholar 

  4. Kloner RA, Carson C, Dobs A, Kopecky S, Mohler ER. Testosterone and cardiovascular disease. J Am Coll Cardiol. 2016;67:545–57. https://doi.org/10.1016/j.jacc.2015.12.005.

    Article  CAS  PubMed  Google Scholar 

  5. Corona G, Rastrelli G, Di Pasquale G, Sforza A, Mannucci E, Maggi M. Endogenous testosterone levels and cardiovascular risk: meta-analysis of observational studies. J Sex Med. 2018;15:1260–71. https://doi.org/10.1016/j.jsxm.2018.06.012.

    Article  PubMed  Google Scholar 

  6. Martínez-Razo LD, Martínez-Ibarra A, Vázquez-Martínez ER, Cerbón M. The impact of di-(2-ethylhexyl) phthalate and mono(2-ethylhexyl) phthalate in placental development, function, and pathophysiology. Environ Int. 2021;146:106228. https://doi.org/10.1016/j.envint.2020.106228.

    Article  CAS  PubMed  Google Scholar 

  7. Khasin LG, Della Rosa J, Petersen N, Moeller J, Kriegsfeld LJ, Lishko PV. The impact of di-2-ethylhexyl phthalate on sperm fertility. Front Cell Dev Biol. 2020;8:426. https://doi.org/10.3389/fcell.2020.00426.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burdorf A, Brand T, Jaddoe VW, Hofman A, Mackenbach JP, Steegers EAP. The effects of work-related maternal risk factors on time to pregnancy, preterm birth and birth weight: the Generation R Study. Occup Environ Med. 2011;68:197–204. https://doi.org/10.1136/oem.2009.046516.

    Article  CAS  PubMed  Google Scholar 

  9. Wu Y, Wang J, Zhao T, Chen J, Kang L, Wei Y, et al. Di-(2-ethylhexyl) phthalate exposure leads to ferroptosis via the HIF-1α/HO-1 signaling pathway in mouse testes. J Hazard Mater. 2022;426:127807. https://doi.org/10.1016/j.jhazmat.2021.127807.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao T-X, Wang J-K, Shen L-J, Long C-L, Liu B, Wei Y, et al. Increased m6A RNA modification is related to the inhibition of the Nrf2-mediated antioxidant response in di-(2-ethylhexyl) phthalate-induced prepubertal testicular injury. Environ Pollut. 2020;259:113911. https://doi.org/10.1016/j.envpol.2020.113911.

    Article  CAS  PubMed  Google Scholar 

  11. Hong Y, Zhou Y, Shen L, Wei Y, Long C, Fu Y, et al. Exposure to DEHP induces testis toxicity and injury through the ROS/mTOR/NLRP3 signaling pathway in immature rats. Ecotoxicol Environ Saf. 2021;227:112889. https://doi.org/10.1016/j.ecoenv.2021.112889.

    Article  CAS  PubMed  Google Scholar 

  12. Santiago J, Silva JV, Alves MG, Oliveira PF, Fardilha M. Testicular aging: an overview of ultrastructural, cellular, and molecular alterations. J Gerontol A Biol Sci Med Sci. 2019;74:860–71. https://doi.org/10.1093/gerona/gly082.

    Article  CAS  PubMed  Google Scholar 

  13. Nelson JF, Latham KR, Finch CE. Plasma testosterone levels in C57BL/6J male mice: effects of age and disease. Acta Endocrinol (Copenh). 1975;80:744–52. https://doi.org/10.1530/acta.0.0800744.

    Article  CAS  PubMed  Google Scholar 

  14. Sokanovic SJ, Baburski AZ, Janjic MM, Stojkov NJ, Bjelic MM, Lalosevic D, et al. The opposing roles of nitric oxide and cGMP in the age-associated decline in rat testicular steroidogenesis. Endocrinology. 2013;154:3914–24. https://doi.org/10.1210/en.2013-1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sokanovic SJ, Janjic MM, Stojkov NJ, Baburski AZ, Bjelic MM, Andric SA, et al. Age related changes of cAMP and MAPK signaling in Leydig cells of Wistar rats. Exp Gerontol. 2014;58:19–29. https://doi.org/10.1016/j.exger.2014.07.004.

    Article  CAS  PubMed  Google Scholar 

  16. Barakat R, Lin P-CP, Rattan S, Brehm E, Canisso IF, Abosalum ME, et al. Prenatal exposure to DEHP induces premature reproductive senescence in male mice. Toxicol Sci. 2017;156:96–108. https://doi.org/10.1093/toxsci/kfw248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qigen X, Haiming C, Kai X, Yong G, Chunhua D. Prenatal DEHP exposure induces premature testicular aging by promoting Leydig cell senescence through the MAPK signaling pathways. Adv Biol (Weinh). 2023;7:e2300130. https://doi.org/10.1002/adbi.202300130.

    Article  CAS  PubMed  Google Scholar 

  18. Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V, et al. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxid Med Cell Longev. 2016;2016:2183026. https://doi.org/10.1155/2016/2183026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei Y, Zhou Y, Long C, Wu H, Hong Y, Fu Y, et al. Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2. Environ Pollut. 2021;289:117904. https://doi.org/10.1016/j.envpol.2021.117904.

    Article  CAS  PubMed  Google Scholar 

  20. Salomon TB, Hackenhaar FS, Almeida AC, Schüller AK, Gil Alabarse PV, Ehrenbrink G, et al. Oxidative stress in testis of animals during aging with and without reproductive activity. Exp Gerontol. 2013;48:940–6. https://doi.org/10.1016/j.exger.2013.06.010.

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Chen H, Liao J, Chen K, Javed MT, Qiao N, et al. Long-term copper exposure promotes apoptosis and autophagy by inducing oxidative stress in pig testis. Environ Sci Pollut Res Int. 2021;28:55140–53. https://doi.org/10.1007/s11356-021-14853-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ruth KS, Day FR, Tyrrell J, Thompson DJ, Wood AR, Mahajan A, et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med. 2020;26:252–8. https://doi.org/10.1038/s41591-020-0751-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab. 1999;84:3666–72. https://doi.org/10.1210/jcem.84.10.6079.

    Article  CAS  PubMed  Google Scholar 

  24. Ho CKM, Stoddart M, Walton M, Anderson RA, Beckett GJ. Calculated free testosterone in men: comparison of four equations and with free androgen index. Ann Clin Biochem. 2006;43:389–97. https://doi.org/10.1258/000456306778520115.

    Article  CAS  PubMed  Google Scholar 

  25. Green R, Allen LH, Bjørke-Monsen A-L, Brito A, Guéant J-L, Miller JW, et al. Vitamin B12 deficiency. Nat Rev Dis Primers. 2017;3:17040. https://doi.org/10.1038/nrdp.2017.40.

    Article  PubMed  Google Scholar 

  26. Klemera P, Doubal S. A new approach to the concept and computation of biological age. Mech Ageing Dev. 2006;127:240–8. https://doi.org/10.1016/j.mad.2005.10.004.

    Article  PubMed  Google Scholar 

  27. Stajnko A, Runkel AA, Kosjek T, Snoj Tratnik J, Mazej D, Falnoga I, et al. Assessment of susceptibility to phthalate and DINCH exposure through CYP and UGT single nucleotide polymorphisms. Environ Int. 2022;159:107046. https://doi.org/10.1016/j.envint.2021.107046.

    Article  CAS  PubMed  Google Scholar 

  28. Wu H, Estill MS, Shershebnev A, Suvorov A, Krawetz SA, Whitcomb BW, et al. Preconception urinary phthalate concentrations and sperm DNA methylation profiles among men undergoing IVF treatment: a cross-sectional study. Hum Reprod. 2017;32:2159–69. https://doi.org/10.1093/humrep/dex283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koch HM, Bolt HM, Angerer J. Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch Toxicol. 2004;78:123–30. https://doi.org/10.1007/s00204-003-0522-3.

    Article  CAS  PubMed  Google Scholar 

  30. Kessler W, Numtip W, Völkel W, Seckin E, Csanády GA, Pütz C, et al. Kinetics of di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate in blood and of DEHP metabolites in urine of male volunteers after single ingestion of ring-deuterated DEHP. Toxicol Appl Pharmacol. 2012;264:284–91. https://doi.org/10.1016/j.taap.2012.08.009.

    Article  CAS  PubMed  Google Scholar 

  31. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. https://doi.org/10.1093/nar/28.1.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2:100141. https://doi.org/10.1016/j.xinn.2021.100141.

    Article  CAS  PubMed  Google Scholar 

  33. Avelar RA, Ortega JG, Tacutu R, Tyler EJ, Bennett D, Binetti P, et al. A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol. 2020;21:91. https://doi.org/10.1186/s13059-020-01990-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chatsirisupachai K, Palmer D, Ferreira S, de Magalhães JP. A human tissue-specific transcriptomic analysis reveals a complex relationship between aging, cancer, and cellular senescence. Aging Cell. 2019;18:e13041. https://doi.org/10.1111/acel.13041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Ma L, Pei X, Wang H, Tang X, Pei J-F, et al. Comprehensive assessment of cellular senescence in the tumor microenvironment. Brief Bioinform. 2022;23:bbac118. https://doi.org/10.1093/bib/bbac118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saul D, Kosinsky RL, Atkinson EJ, Doolittle ML, Zhang X, LeBrasseur NK, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022;13:4827. https://doi.org/10.1038/s41467-022-32552-1.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. https://doi.org/10.1186/1471-2105-14-7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ, et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49:D1541-7. https://doi.org/10.1093/nar/gkaa1011.

    Article  CAS  PubMed  Google Scholar 

  39. Guillot G, Rousset F. Dismantling the Mantel tests. Methods Ecol Evol. 2013;4:336–44. https://doi.org/10.1111/2041-210x.12018.

    Article  Google Scholar 

  40. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7. https://doi.org/10.1038/nmeth.3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50. https://doi.org/10.1073/pnas.0506580102.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat Commun. 2018;9:20. https://doi.org/10.1038/s41467-017-02391-6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Holland CH, Szalai B, Saez-Rodriguez J. Transfer of regulatory knowledge from human to mouse for functional genomics analysis. Biochim Biophys Acta Gene Regul Mech. 2020;1863:194431. https://doi.org/10.1016/j.bbagrm.2019.194431.

    Article  CAS  PubMed  Google Scholar 

  44. Luo P, Feng X, Deng R, Wang F, Zhang Y, Li X, et al. An autofluorescence-based isolation of Leydig cells for testosterone deficiency treatment. Mol Cell Endocrinol. 2021;535:111389. https://doi.org/10.1016/j.mce.2021.111389.

    Article  CAS  PubMed  Google Scholar 

  45. Chandra T, Kirschner K, Thuret J-Y, Pope BD, Ryba T, Newman S, et al. Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol Cell. 2012;47:203–14. https://doi.org/10.1016/j.molcel.2012.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular senescence: defining a path forward. Cell. 2019;179:813–27. https://doi.org/10.1016/j.cell.2019.10.005.

    Article  CAS  PubMed  Google Scholar 

  47. Letts JA, Fiedorczuk K, Sazanov LA. The architecture of respiratory supercomplexes. Nature. 2016;537:644–8. https://doi.org/10.1038/nature19774.

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Salminen A. Role of indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine pathway in the regulation of the aging process. Ageing Res Rev. 2022;75:101573. https://doi.org/10.1016/j.arr.2022.101573.

    Article  CAS  PubMed  Google Scholar 

  49. Maceira A, Pecikoza I, Marcé RM, Borrull F. Multi-residue analysis of several high-production-volume chemicals present in the particulate matter from outdoor air. A preliminary human exposure estimation. Chemosphere. 2020;252:126514. https://doi.org/10.1016/j.chemosphere.2020.126514.

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Zhao T, Chen J, Kang L, Wei Y, Wu Y, et al. Multiple transcriptomic profiling: p53 signaling pathway is involved in DEHP-induced prepubertal testicular injury via promoting cell apoptosis and inhibiting cell proliferation of Leydig cells. J Hazard Mater. 2021;406:124316. https://doi.org/10.1016/j.jhazmat.2020.124316.

    Article  CAS  PubMed  Google Scholar 

  51. Xu J, Wang L, Zhang L, Zheng F, Wang F, Leng J, et al. Mono-2-ethylhexyl phthalate drives progression of PINK1-parkin-mediated mitophagy via increasing mitochondrial ROS to exacerbate cytotoxicity. Redox Biol. 2021;38:101776. https://doi.org/10.1016/j.redox.2020.101776.

    Article  CAS  PubMed  Google Scholar 

  52. Kato K, Silva MJ, Reidy JA, Hurtz D, Malek NA, Needham LL, et al. Mono(2-ethyl-5-hydroxyhexyl) phthalate and mono-(2-ethyl-5-oxohexyl) phthalate as biomarkers for human exposure assessment to di-(2-ethylhexyl) phthalate. Environ Health Perspect. 2004;112:327–30. https://doi.org/10.1289/ehp.6663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Silva MJ, Reidy JA, Preau JL, Samandar E, Needham LL, Calafat AM. Measurement of eight urinary metabolites of di(2-ethylhexyl) phthalate as biomarkers for human exposure assessment. Biomarkers. 2006;11:1–13. https://doi.org/10.1080/13547500500382868.

    Article  CAS  PubMed  Google Scholar 

  54. Sharma RP, Schuhmacher M, Kumar V. Development of a human physiologically based pharmacokinetic (PBPK) model for phthalate (DEHP) and its metabolites: a bottom up modeling approach. Toxicol Lett. 2018;296:152–62. https://doi.org/10.1016/j.toxlet.2018.06.1217.

    Article  CAS  PubMed  Google Scholar 

  55. Koch HM, Bolt HM, Preuss R, Angerer J. New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol. 2005;79:367–76. https://doi.org/10.1007/s00204-004-0642-4.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Q, Sun Y, Zhang Q, Hou J, Wang P, Kong X, et al. Phthalate exposure in Chinese homes and its association with household consumer products. Sci Total Environ. 2020;719:136965. https://doi.org/10.1016/j.scitotenv.2020.136965.

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Chen H, Yang X, Gielen G, Mandal S, Xu S, Guo J, et al. Effect of biochars on the bioavailability of cadmium and di-(2-ethylhexyl) phthalate to Brassica chinensis L. in contaminated soils. Sci Total Environ. 2019;678:43–52. https://doi.org/10.1016/j.scitotenv.2019.04.417.

    Article  ADS  CAS  PubMed  Google Scholar 

  58. He M-J, Lu J-F, Wang J, Wei S-Q, Hageman KJ. Phthalate esters in biota, air and water in an agricultural area of western China, with emphasis on bioaccumulation and human exposure. Sci Total Environ. 2020;698:134264. https://doi.org/10.1016/j.scitotenv.2019.134264.

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Malarvannan G, Onghena M, Verstraete S, van Puffelen E, Jacobs A, Vanhorebeek I, et al. Phthalate and alternative plasticizers in indwelling medical devices in pediatric intensive care units. J Hazard Mater. 2019;363:64–72. https://doi.org/10.1016/j.jhazmat.2018.09.087.

    Article  CAS  PubMed  Google Scholar 

  60. Tang Z, Chai M, Wang Y, Cheng J. Phthalates in preschool children’s clothing manufactured in seven Asian countries: occurrence, profiles and potential health risks. J Hazard Mater. 2020;387:121681. https://doi.org/10.1016/j.jhazmat.2019.121681.

    Article  CAS  PubMed  Google Scholar 

  61. Shen L, Tang X, Wei Y, Long C, Tan B, Wu S, et al. Vitamin E and vitamin C attenuate Di-(2-ethylhexyl) phthalate-induced blood-testis barrier disruption by p38 MAPK in immature SD rats. Reprod Toxicol. 2018;81:17–27. https://doi.org/10.1016/j.reprotox.2018.06.015.

    Article  CAS  PubMed  Google Scholar 

  62. Yi WEI, Xiang-Liang T, Yu Z, Bin L, Lian-Ju S, Chun-Lan L, et al. DEHP exposure destroys blood-testis barrier (BTB) integrity of immature testes through excessive ROS-mediated autophagy. Genes Dis. 2018;5:263–74. https://doi.org/10.1016/j.gendis.2018.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oudir M, Chader H, Bouzid B, Bendisari K, Latreche B, Boudalia S, et al. Male rat exposure to low dose of di(2-ethylhexyl) phthalate during pre-pubertal, pubertal and post-pubertal periods: impact on sperm count, gonad histology and testosterone secretion. Reprod Toxicol. 2018;75:33–9. https://doi.org/10.1016/j.reprotox.2017.11.004.

    Article  CAS  PubMed  Google Scholar 

  64. Perobelli JE. The male peripubertal phase as a developmental window for reproductive toxicology studies. Curr Pharm Des. 2014;20:5398–415. https://doi.org/10.2174/1381612820666140205150059.

    Article  CAS  PubMed  Google Scholar 

  65. Hannon PR, Niermann S, Flaws JA. Acute exposure to di(2-ethylhexyl) phthalate in adulthood causes adverse reproductive outcomes later in life and accelerates reproductive aging in female mice. Toxicol Sci. 2016;150:97–108. https://doi.org/10.1093/toxsci/kfv317.

    Article  CAS  PubMed  Google Scholar 

  66. How CM, Yen P-L, Wei C-C, Li S-W, Liao VH-C. Early life exposure to di(2-ethylhexyl)phthalate causes age-related declines associated with insulin/IGF-1-like signaling pathway and SKN-1 in Caenorhabditis elegans. Environ Pollut. 2019;251:871–8. https://doi.org/10.1016/j.envpol.2019.04.141.

    Article  CAS  PubMed  Google Scholar 

  67. Pradhan A, Olsson P-E, Jass J. Di(2-ethylhexyl) phthalate and diethyl phthalate disrupt lipid metabolism, reduce fecundity and shortens lifespan of Caenorhabditis elegans. Chemosphere. 2018;190:375–82. https://doi.org/10.1016/j.chemosphere.2017.09.123.

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13. https://doi.org/10.1042/BJ20081386.

    Article  CAS  PubMed  Google Scholar 

  69. Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127. https://doi.org/10.1155/2016/3565127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509:439–46. https://doi.org/10.1038/nature13193.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Traore K, More P, Adla A, Dogbey G, Papadopoulos V, Zirkin B. MEHP induces alteration of mitochondrial function and inhibition of steroid biosynthesis in MA-10 mouse tumor Leydig cells. Toxicology. 2021;463:152985. https://doi.org/10.1016/j.tox.2021.152985.

    Article  CAS  PubMed  Google Scholar 

  72. Tripathi A, Pandey V, Sahu AN, Singh A, Dubey PK. Di-(2-ethylhexyl) phthalate (DEHP) inhibits steroidogenesis and induces mitochondria-ROS mediated apoptosis in rat ovarian granulosa cells. Toxicol Res (Camb). 2019;8:381–94. https://doi.org/10.1039/c8tx00263k.

    Article  CAS  PubMed  Google Scholar 

  73. Szczepanek K, Lesnefsky EJ, Larner AC. Multi-tasking: nuclear transcription factors with novel roles in the mitochondria. Trends Cell Biol. 2012;22:429–37. https://doi.org/10.1016/j.tcb.2012.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wegrzyn J, Potla R, Chwae Y-J, Sepuri NBV, Zhang Q, Koeck T, et al. Function of mitochondrial Stat3 in cellular respiration. Science. 2009;323:793–7. https://doi.org/10.1126/science.1164551.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kramer AH, Joos-Vandewalle J, Edkins AL, Frost CL, Prinsloo E. Real-time monitoring of 3T3-L1 preadipocyte differentiation using a commercially available electric cell-substrate impedance sensor system. Biochem Biophys Res Commun. 2014;443:1245–50. https://doi.org/10.1016/j.bbrc.2013.12.123.

    Article  CAS  PubMed  Google Scholar 

  76. Stephens JM, Morrison RF, Pilch PF. The expression and regulation of STATs during 3T3-L1 adipocyte differentiation. J Biol Chem. 1996;271:10441–4. https://doi.org/10.1074/jbc.271.18.10441.

    Article  CAS  PubMed  Google Scholar 

  77. Tammineni P, Anugula C, Mohammed F, Anjaneyulu M, Larner AC, Sepuri NBV. The import of the transcription factor STAT3 into mitochondria depends on GRIM-19, a component of the electron transport chain. J Biol Chem. 2013;288:4723–32. https://doi.org/10.1074/jbc.M112.378984.

    Article  CAS  PubMed  Google Scholar 

  78. Liu C, Qian P, Yang L, Zhang L, Chen C, He M, et al. Pubertal exposure to di-(2-ethylhexyl)-phthalate inhibits G9a-mediated histone methylation during spermatogenesis in mice. Arch Toxicol. 2016;90:955–69. https://doi.org/10.1007/s00204-015-1529-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all the teachers (Ruiqing Han, Peking Union Medical College, and so on) for their help.

Author information

Authors and Affiliations

Authors

Contributions

HMC and QGX: conceptualization, investigation, visualization, writing — original draft.

HMC and JQC: investigation, data curation, visualization, software.

HMC: methodology, visualization, writing — revised draft.

PL: investigation, validation, methodology, visualization, writing — revised draft.

KX: investigation, data curation.

LM: investigation, validation.

MDC: conceptualization, supervision, investigation.

ZW: conceptualization, funding acquisition, project administration, writing — review and editing.

CHD: conceptualization, supervision, writing — review and editing.

Corresponding author

Correspondence to Zi Wan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12.1 MB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Xie, Q., Luo, P. et al. Di-(2-ethylhexyl) phthalate exposure induces premature testicular senescence by disrupting mitochondrial respiratory chain through STAT5B-mitoSTAT3 in Leydig cell. GeroScience (2024). https://doi.org/10.1007/s11357-024-01119-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-024-01119-x

Keywords

Navigation