Skip to main content

Advertisement

Log in

GrimAge is elevated in older adults with mild COVID-19 an exploratory analysis

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

COVID-19 has been contained; however, the side effects associated with its infection continue to be a challenge for public health, particularly for older adults. On the other hand, epigenetic status contributes to the inter-individual health status and is associated with COVID-19 severity. Nevertheless, current studies focus only on severe COVID-19. Considering that most of the worldwide population developed mild COVID-19 infection. In the present exploratory study, we aim to analyze the association of mild COVID-19 with epigenetic ages (HorvathAge, HannumAge, GrimAge, PhenoAge, SkinAge, and DNAmTL) and clinical variables obtained from a Mexican cohort of older adults. We found that all epigenetic ages significantly differ from the chronological age, but only GrimAge is elevated. Additionally, both the intrinsic epigenetic age acceleration (IEAA) and the extrinsic epigenetic age acceleration (EEAA) are accelerated in all patients. Moreover, we found that immunological estimators and DNA damage were associated with PhenoAge, SkinBloodHorvathAge, and HorvathAge, suggesting that the effects of mild COVID-19 on the epigenetic clocks are mainly associated with inflammation and immunology changes. In conclusion, our results show that the effects of mild COVID-19 on the epigenetic clock are mainly associated with the immune system and an increase in GrimAge, IEAA, and EEAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tabrizi N, Lak A, Moussavi ASMR. Green space and the health of the older adult during pandemics: a narrative review on the experience of COVID-19. Front Public Health. 2023;11:1218091.

    Article  PubMed  PubMed Central  Google Scholar 

  2. WHO-convened global study of origins of SARS-CoV-2: China Part. 2021. https://www.who.int/publications/i/item/who-convened-global-study-of-origins-of-sars-cov-2-china-part. Accessed 12 Feb 2024.

  3. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perrotta F, Corbi G, Mazzeo G, Boccia M, Aronne L, D’Agnano V, Komici K, Mazzarella G, Parrella R, Bianco A. COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clin Exp Res. 2020;32:1599–608.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wong MK, Brooks DJ, Ikejezie J, et al. COVID-19 mortality and progress toward vaccinating older adults-World Health Organization, Worldwide, 2020–2022. MMWR Morb Mortal Wkly Rep. 2023;72:113–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vogt G, Huber M, Thiemann M, van den Boogaart G, Schmitz OJ, Schubart CD. Production of different phenotypes from the same genotype in the same environment by developmental variation. J Exp Biol. 2008;211:510–23.

    Article  CAS  PubMed  Google Scholar 

  7. Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67.

    Article  CAS  PubMed  Google Scholar 

  8. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Oblak L, van der Zaag J, Higgins-Chen AT, Levine ME, Boks MP. A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Res Rev. 2021;69:101348.

  10. Lopomo A, Coppedè F. Epigenetic signatures in the diagnosis and prognosis of cancer. In: Epigenetic Mechanisms in Cancer. Elsevier; 2018. p. 313–343.

  11. Morales Berstein F, McCartney DL, Lu AT, et al. Assessing the causal role of epigenetic clocks in the development of multiple cancers: a Mendelian randomization study. Elife. 2022. https://doi.org/10.7554/eLife.75374.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yu M, Hazelton WD, Luebeck GE, Grady WM. Epigenetic aging: more than just a clock when it comes to cancer. Cancer Res. 2020;80:367–74.

    Article  CAS  PubMed  Google Scholar 

  13. Grodstein F, Lemos B, Yu L, et al. The association of epigenetic clocks in brain tissue with brain pathologies and common aging phenotypes. Neurobiol Dis. 2021;157:105428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grodstein F, Lemos B, Yu L, Iatrou A, De Jager PL, Bennett DA. Characteristics of epigenetic clocks across blood and brain tissue in older women and men. Front Neurosci. 2021;14:555307.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hudec M, Dankova P, Solc R, Bettazova N, Cerna M. Epigenetic regulation of circadian rhythm and its possible role in diabetes mellitus. Int J Mol Sci. 2020;21:3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roshandel D, Chen Z, Canty AJ, Bull SB, Natarajan R, Paterson AD. DNA methylation age calculators reveal association with diabetic neuropathy in type 1 diabetes. Clin Epigenetics. 2020;12:1–16.

    Article  Google Scholar 

  17. Mendelson MM. Epigenetic age acceleration: a biological doomsday clock for cardiovascular disease? Circ Genom Precis Med. 2018;11:e002089.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lo Y-H, Lin W-Y. Cardiovascular health and four epigenetic clocks. Clin Epigenetics. 2022;14:1–10.

    Article  Google Scholar 

  19. Joyce BT, Gao T, Zheng Y, et al. Epigenetic age acceleration reflects long-term cardiovascular health. Circ Res. 2021. https://doi.org/10.1161/CIRCRESAHA.121.318965.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schmitz LL, Zhao W, Ratliff SM, et al. The socioeconomic gradient in epigenetic ageing clocks: evidence from the multi-ethnic study of atherosclerosis and the health and retirement study. Epigenetics. 2022;17:589–611.

    Article  PubMed  Google Scholar 

  21. Gomez-Verjan JC, Esparza-Aguilar M, Martín-Martín V, Salazar-Perez C, Cadena-Trejo C, Gutierrez-Robledo LM, Martínez-Magaña JJ, Nicolini H, Arroyo P. Years of schooling could reduce epigenetic aging: a study of a Mexican cohort. Genes. 2021. https://doi.org/10.3390/genes12091408.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fiorito G, Pedron S, Ochoa-Rosales C, et al. The role of epigenetic clocks in explaining educational inequalities in mortality: a multicohort study and meta-analysis. J Gerontol A Biol Sci Med Sci. 2022;77:1750–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lawrence KG, Kresovich JK, O’Brien KM, Hoang TT, Xu Z, Taylor JA, Sandler DP. Association of neighborhood deprivation with epigenetic aging using 4 clock metrics. JAMA Netw Open. 2020;3:e2024329.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fiorito G, McCrory C, Robinson O, et al. Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging. 2019;11:2045–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Andrasfay T, Crimmins E. Occupational characteristics and epigenetic aging among older adults in the United States. Epigenetics. 2023. https://doi.org/10.1080/15592294.2023.2218763.

    Article  PubMed  PubMed Central  Google Scholar 

  26. de Moura MC, Davalos V, Planas-Serra L, et al. Epigenome-wide association study of COVID-19 severity with respiratory failure. eBioMedicine. 2021. https://doi.org/10.1016/j.ebiom.2021.103339.

  27. Corley MJ, Pang APS, Dody K, et al. Genome-wide DNA methylation profiling of peripheral blood reveals an epigenetic signature associated with severe COVID-19. J Leukoc Biol. 2021;110:21–6.

    Article  CAS  PubMed  Google Scholar 

  28. Cao X, Li W, Wang T, Ran D, Davalos V, Planas-Serra L, Pujol A, Esteller M, Wang X, Yu H. Accelerated biological aging in COVID-19 patients. Nat Commun. 2022;13:1–7.

    CAS  Google Scholar 

  29. Calzari L, Zanotti L, Inglese E, et al. Role of epigenetics in the clinical evolution of COVID-19 disease. Epigenome-wide association study identifies markers of severe outcome. Eur J Med Res. 2023;28:1–15.

    Article  Google Scholar 

  30. Franzen J, Nüchtern S, Tharmapalan V, et al. Epigenetic clocks are not accelerated in COVID-19 patients. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22179306.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xu W, Zhang F, Shi Y, Chen Y, Shi B, Yu G. Causal association of epigenetic aging and COVID-19 severity and susceptibility: a bidirectional Mendelian randomization study. Front Med. 2022;9:989950.

    Article  Google Scholar 

  32. van den Akker M, Buntinx F, Metsemakers JF, Roos S, Knottnerus JA. Multimorbidity in general practice: prevalence, incidence, and determinants of co-occurring chronic and recurrent diseases. J Clin Epidemiol. 1998;51:367–375.

  33. Huntley AL, Johnson R, Purdy S, Valderas JM, Salisbury C. Measures of multimorbidity and morbidity burden for use in primary care and community settings: a systematic review and guide. Ann Fam Med. 2012;10:134–41.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sánchez-García S, Moreno-Tamayo K, Ramírez-Aldana R, García-Peña C, Medina-Campos RH, García Dela Torre P, Rivero-Segura NA. Insomnia impairs both the pro-BDNF and the BDNF levels similarly to older adults with cognitive decline: an exploratory study. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24087387.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dons RF, Wians FH Jr. Endocrine and metabolic disorders: clinical lab testing manual, Fourth Edition. CRC Press; 2009.

  36. García Muñoz AI, Melo Buitrago PJ, Rodríguez Arcila MA, Silva Zambrano DA. Índices aterogénicos y composición corporal en cadetes de una escuela de formación militar colombiana. Sanid Mil. 2020;76:13–8.

    Google Scholar 

  37. [No title]. https://coronavirus.gob.mx/wp-content/uploads/2021/08/GuiaTx_COVID19_ConsensoInterinstitucional_2021.08.03.pdf. Accessed 29 Aug 2023.

  38. Bausinger J, Speit G. The impact of lymphocyte isolation on induced DNA damage in human blood samples measured by the comet assay. Mutagenesis. 2016;31:567–72.

    Article  CAS  PubMed  Google Scholar 

  39. Gyori BM, Venkatachalam G, Thiagarajan PS, Hsu D, Clement M-V. OpenComet: an automated tool for comet assay image analysis. Redox Biol. 2014;2:457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

  41. Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, Van Djik S, Muhlhausler B, Stirzaker C, Clark SJ. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016;17:208.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8:389–99.

    Article  CAS  PubMed  Google Scholar 

  43. Lu AT, Narayan P, Grant MJ, et al. DNA methylation study of Huntington’s disease and motor progression in patients and in animal models. Nat Commun. 2020;11:4529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Triche TJ Jr, Weisenberger DJ, Van Den Berg D, Laird PW, Siegmund KD. Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res. 2013;41:e90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV, Clark SJ, Molloy PL. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8:6.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Scherer A. Batch effects and noise in microarray experiments: sources and solutions. Hoboken, NJ: John Wiley & Sons; 2009.

  47. Ross KM, Carroll JE, Horvath S, Hobel CJ, Coussons-Read ME, Dunkel Schetter C. Epigenetic age and pregnancy outcomes: GrimAge acceleration is associated with shorter gestational length and lower birthweight. Clin Epigenetics. 2020;12:120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pelegí-Sisó D, de Prado P, Ronkainen J, Bustamante M, González JR. methylclock: a Bioconductor package to estimate DNA methylation age. Bioinformatics. 2021;37:1759–60.

    Article  PubMed  Google Scholar 

  49. Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging. 2018;10:573–91.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Horvath S, Oshima J, Martin GM, et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and studies. Aging. 2018;10:1758–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging. 2019;11:303–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McCrory C, Fiorito G, Hernandez B, et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J Gerontol A Biol Sci Med Sci. 2021;76:741–9.

    Article  PubMed  Google Scholar 

  53. Chen L, Ganz PA, Sehl ME. DNA methylation, aging, and cancer risk: a mini-review. Front Bioinform. 2022;2:847629.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Islam MS, Wang Z, Abdel-Mohsen M, Chen X, Montaner LJ. Tissue injury and leukocyte changes in post-acute sequelae of SARS-CoV-2: review of 2833 post-acute patient outcomes per immune dysregulation and microbial translocation in long COVID. J Leukoc Biol. 2023;113:236–54.

    Article  PubMed  Google Scholar 

  55. Smith JA, Raisky J, Ratliff SM, Liu J, Kardia SLR, Turner ST, Mosley TH, Zhao W. Intrinsic and extrinsic epigenetic age acceleration are associated with hypertensive target organ damage in older African Americans. BMC Med Genomics. 2019;12:141.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schiffl H, Lang SM. Long-term interplay between COVID-19 and chronic kidney disease. Int Urol Nephrol. 2023;55:1977–84.

    Article  PubMed  Google Scholar 

  57. Mahamat-Saleh Y, Fiolet T, Rebeaud ME, Mulot M, Guihur A, El Fatouhi D, Laouali N, Peiffer-Smadja N, Aune D, Severi G. Diabetes, hypertension, body mass index, smoking and COVID-19-related mortality: a systematic review and meta-analysis of observational studies. BMJ Open. 2021;11:e052777.

    Article  PubMed  Google Scholar 

  58. Vetter VM, Spieker J, Sommerer Y, Buchmann N, Kalies CH, Regitz-Zagrosek V, Bertram L, Demuth I. DNA methylation age acceleration is associated with risk of diabetes complications. Commun Med. 2023;3:1–10.

    Article  Google Scholar 

  59. Foster CA, Barker-Kamps M, Goering M, Patki A, Tiwari HK, Mrug S. Epigenetic age acceleration correlates with BMI in young adults. Aging. 2023;15:513–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Soriano-Tárraga C, Giralt-Steinhauer E, Mola-Caminal M, et al. Epigenomic age is associated with leukoaraiosis volume in stroke patients, irrespective of chronological age. Aging. 2017;8:2655–2666.

  61. Dissanayake H. COVID-19 and metabolic syndrome. Best Pract Res Clin Endocrinol Metab. 2023;37:101753.

    Article  CAS  PubMed  Google Scholar 

  62. Shiau S, Cantos A, Ramon CV, Shen Y, Shah J, Jang G, Baccarelli AA, Arpadi SM, Yin MT. Epigenetic age in young African American adults with perinatally acquired HIV. J Acquir Immune Defic Syndr. 2021;87:1102–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Teschendorff AE. A comparison of epigenetic mitotic-like clocks for cancer risk prediction. Genome Med. 2020;12:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hu B, Jadhav RR, Gustafson CE, Le Saux S, Ye Z, Li X, Tian L, Weyand CM, Goronzy JJ. Distinct age-related epigenetic signatures in CD4 and CD8 T-cells. Front Immunol. 2020;11:585168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nasrollahi H, Talepoor AG, Saleh Z, Eshkevar Vakili M, Heydarinezhad P, Karami N, Noroozi M, Meri S, Kalantar K. Immune responses in mildly versus critically ill COVID-19 patients. Front Immunol. 2023;14:1077236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130:2620–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kuo C-L, Pilling LC, Atkins JL, Masoli JAH, Delgado J, Tignanelli C, Kuchel GA, Melzer D, Beckman KB, Levine ME. Biological aging predicts vulnerability to COVID-19 severity in UK Biobank participants. J Gerontol A Biol Sci Med Sci. 2021;76:e133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mahmoodpoor A, Sanaie S, Eskandari M, Behrouzi N, Taghizadeh M, Roudbari F, Emamalizadeh B, Sohrabifar N, Kazeminasab S. Association between leukocyte telomere length and COVID-19 severity. Egypt J Med Hum Genet. 2023;24:37.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Weitzman MD, Fradet-Turcotte A. Virus DNA replication and the host DNA damage response. Annu Rev Virol. 2018;5:141–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jin R, Niu C, Wu F, et al. DNA damage contributes to age-associated differences in SARS-CoV-2 infection. Aging Cell. 2022;21:e13729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gioia U, Tavella S, Martínez-Orellana P, et al. SARS-CoV-2 infection induces DNA damage, through CHK1 degradation and impaired 53BP1 recruitment, and cellular senescence. Nat Cell Biol. 2023;25:550–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cribb L, Hodge AM, Yu C, Li SX, English DR, Makalic E, Southey MC, Milne RL, Giles GG, Dugué P-A. Inflammation and epigenetic aging are largely independent markers of biological aging and mortality. J Gerontol A Biol Sci Med Sci. 2022;77:2378–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Horvath S, Levine AJ. HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis. 2015;212:1563–73.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mukherjee N, Harrison TC. Epigenetic aging and rheumatoid arthritis. J Gerontol A Biol Sci Med Sci. 2023. https://doi.org/10.1093/gerona/glad213.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the patients and study participants who made this work possible. We want to thank the valuable support of Juana Angélica García Domínguez and Dayana Araceli Mondragón Jaime.

Funding

This work was supported by the Alzheimer's Association/National Academy of Neuropsychology grant ALZ-NAN-22-941933. This work belongs to the project DI-PI-004/2023, supported by Dirección General de Políticas de Investigación en Salud (DGPIS) convocatoria 2023 (Proyecto FPIS2024-INGER-7134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Gomez-Verjan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-delaTorre, P., Rivero-Segura, N.A., Sánchez-García, S. et al. GrimAge is elevated in older adults with mild COVID-19 an exploratory analysis. GeroScience 46, 3511–3524 (2024). https://doi.org/10.1007/s11357-024-01095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-024-01095-2

Keywords