Skip to main content
Log in

Association of biological aging with frailty and post-transplant outcomes among adults with cirrhosis

  • ORIGINAL ARTICLE
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Frailty is classically associated with advanced age but is also an important predictor of clinical outcomes in comparatively young adults with cirrhosis. We examined the association of biological aging with frailty and post-transplant outcomes in a pilot of adults with cirrhosis undergoing liver transplantation (LT). Frailty was measured via the Liver Frailty Index (LFI). The primary epigenetic clock DNA methylation (DNAm) PhenoAge was calculated from banked peripheral blood mononuclear cells; we secondarily explored two first-generation clocks (Hannum; Horvath) and two additional second-generation clocks (GrimAge; GrimAge2). Twelve adults were included: seven frail (LFI ≥ 4.4, mean age 55 years) and five robust (LFI < 3.2, mean age 55 years). Mean PhenoAge age acceleration (AgeAccel) was + 2.5 years (P = 0.23) for frail versus robust subjects. Mean PhenoAge AgeAccel was + 2.7 years (P = 0.19) for subjects who were readmitted or died within 30 days of discharge post-LT versus those without this outcome. When compared with first-generation clocks, the second-generation clocks demonstrated greater average AgeAccel for subjects with frailty or poor post-LT outcomes. Measuring biological age using DNAm-derived epigenetic clocks is feasible in adults undergoing LT. While frail and robust subjects had the same average chronological age, average biological age as measured by second-generation epigenetic clocks tended to be accelerated among those who were frail or experienced a poor post-LT outcome. These results suggest that frailty in these relatively young subjects with cirrhosis may involve similar aging mechanisms as frailty classically observed in chronologically older adults and warrant validation in a larger cohort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. The Lancet. 2013;381(9868):752–62. https://doi.org/10.1016/S0140-6736(12)62167-9.

    Article  Google Scholar 

  2. Lai JC, Dodge JL, Sen S, Covinsky K, Feng S. Functional decline in patients with cirrhosis awaiting liver transplantation: results from the functional assessment in liver transplantation (FrAILT) study. Hepatology. 2016;63(2):574–80. https://doi.org/10.1002/hep.28316.

    Article  CAS  PubMed  Google Scholar 

  3. Lai JC, Dodge JL, McCulloch CE, Covinsky KE, Singer JP. Frailty and the burden of concurrent and incident disability in patients with cirrhosis: a prospective cohort study. Hepatol Commun. 2020;4(1):126–33. https://doi.org/10.1002/hep4.1444.

    Article  PubMed  Google Scholar 

  4. Lai JC, Dodge JL, Kappus MR, et al. Changes in frailty are associated with waitlist mortality in patients with cirrhosis. J Hepatol. 2020;73(3):575–81. https://doi.org/10.1016/j.jhep.2020.03.029.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lai JC, Shui AM, Duarte-Rojo A, et al. Frailty, mortality, and health care utilization after liver transplantation: from the multicenter functional assessment in liver transplantation (FrAILT) study. Hepatology. 2022;75(6):1471–9. https://doi.org/10.1002/hep.32268.

    Article  PubMed  Google Scholar 

  6. Guyonnet S, Rolland Y, Takeda C, et al. The INSPIRE bio-resource research platform for healthy aging and geroscience: focus on the human translational research cohort (the INSPIRE-T cohort). J Frailty Aging. 2021;10(2):110–20. https://doi.org/10.14283/jfa.2020.38.

    Article  CAS  PubMed  Google Scholar 

  7. McCartney DL, Stevenson AJ, Walker RM, et al. Investigating the relationship between DNA methylation age acceleration and risk factors for Alzheimer’s disease. Alzheimers Dement (Amst). 2018;10:429–37. https://doi.org/10.1016/j.dadm.2018.05.006.

    Article  PubMed  Google Scholar 

  8. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186(2):243–78. https://doi.org/10.1016/j.cell.2022.11.001.

    Article  CAS  PubMed  Google Scholar 

  9. Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371–84. https://doi.org/10.1038/s41576-018-0004-3.

    Article  CAS  PubMed  Google Scholar 

  10. Jansen R, Han LK, Verhoeven JE, et al. An integrative study of five biological clocks in somatic and mental health. Tyler JK, Hägg S, Hägg S, Belsky DW, van den Akker E, Le Couteur DG, eds. eLife. 2021;10:e59479. https://doi.org/10.7554/eLife.59479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenetics. 2019;11(1):62. https://doi.org/10.1186/s13148-019-0656-7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. https://doi.org/10.1186/gb-2013-14-10-r115.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359–67. https://doi.org/10.1016/j.molcel.2012.10.016.

    Article  CAS  PubMed  Google Scholar 

  14. Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91. https://doi.org/10.18632/aging.101414.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–27. https://doi.org/10.18632/aging.101684.

    Article  CAS  PubMed  Google Scholar 

  16. Lu AT, Binder AM, Zhang J, et al. DNA methylation GrimAge version 2. Aging. 2022;14(23):9484–549. https://doi.org/10.18632/aging.204434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma Q, Li BL, Yang L, et al. Association between phenotypic age and mortality in patients with multivessel coronary artery disease. Dis Markers. 2022;2022:4524032. https://doi.org/10.1155/2022/4524032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han WM, Apornpong T, Gatechompol S, et al. Association of phenotypic aging marker with comorbidities, frailty and inflammatory markers in people living with HIV. BMC Geriatr. 2022;22(1):1010. https://doi.org/10.1186/s12877-022-03720-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. El Khoury LY, Gorrie-Stone T, Smart M, et al. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. Genome Biol. 2019;20(1):283. https://doi.org/10.1186/s13059-019-1810-4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lai JC, Covinsky KE, McCulloch CE, Feng S. The Liver Frailty Index improves mortality prediction of the subjective clinician assessment in patients with cirrhosis. Am J Gastroenterol. 2018;113(2):235–42. https://doi.org/10.1038/ajg.2017.443.

    Article  PubMed  Google Scholar 

  21. Lai JC, Segev DL, McCulloch CE, Covinsky KE, Dodge JL, Feng S. Physical frailty after liver transplantation. Am J Transplant. 2018;18(8):1986–94. https://doi.org/10.1111/ajt.14675.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lai JC, Shui AM, Duarte-Rojo A, et al. Association of frailty with health-related quality of life in liver transplant recipients. JAMA Surg. 2023;158(2):130–8. https://doi.org/10.1001/jamasurg.2022.6387.

    Article  PubMed  Google Scholar 

  23. Lai JC, Covinsky KE, Dodge JL, et al. Development of a novel Frailty Index to predict mortality in patients with end-stage liver disease. Hepatology. 2017;66(2):564–74. https://doi.org/10.1002/hep.29219.

    Article  PubMed  Google Scholar 

  24. Kardashian A, Ge J, McCulloch CE, et al. Identifying an optimal Liver Frailty Index cutoff to predict waitlist mortality in liver transplant candidates. Hepatology. 2021;73(3):1132–9. https://doi.org/10.1002/hep.31406.

    Article  CAS  PubMed  Google Scholar 

  25. Peters FS, Manintveld OC, Betjes MGH, Baan CC, Boer K. Clinical potential of DNA methylation in organ transplantation. J Heart Lung Transplant. 2016;35(7):843–50. https://doi.org/10.1016/j.healun.2016.02.007.

    Article  PubMed  Google Scholar 

  26. Schaenman J, Zhou X, Guo R, et al. DNA methylation age is more closely associated with infection risk than chronological age in kidney transplant recipients. Transplant Direct. 2020;6(8):e576. https://doi.org/10.1097/TXD.0000000000001020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vasco M, Benincasa G, Fiorito C, et al. Clinical epigenetics and acute/chronic rejection in solid organ transplantation: an update. Transplant Rev. 2021;35(2):100609. https://doi.org/10.1016/j.trre.2021.100609.

    Article  Google Scholar 

  28. Alsaggaf R, Katta S, Wang T, et al. Epigenetic aging and hematopoietic cell transplantation in patients with severe aplastic anemia. Transplant Cell Therapy. 2021;27(4):313.e1-313.e8. https://doi.org/10.1016/j.jtct.2021.01.013.

    Article  CAS  Google Scholar 

  29. Pidsley R, Zotenko E, Peters TJ, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 2016;17(1):208. https://doi.org/10.1186/s13059-016-1066-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9. https://doi.org/10.1093/bioinformatics/btu049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Touleimat N, Tost J. Complete pipeline for Infinium(®) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics. 2012;4(3):325–41. https://doi.org/10.2217/epi.12.21.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Q, Vallerga CL, Walker RM, et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 2019;11(1):54. https://doi.org/10.1186/s13073-019-0667-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neytchev O, Erlandsson H, Witasp A, et al. Epigenetic clocks indicate that kidney transplantation and not dialysis mitigate the effects of renal ageing. J Intern Med. 2024;295(1):79–90. https://doi.org/10.1111/joim.13724

  34. Soysal P, Stubbs B, Lucato P, et al. Inflammation and frailty in the elderly: a systematic review and meta-analysis. Ageing Res Rev. 2016;31:1–8. https://doi.org/10.1016/j.arr.2016.08.006.

    Article  CAS  PubMed  Google Scholar 

  35. Verschoor CP, Vlasschaert C, Rauh MJ, Paré G. A DNA methylation based measure outperforms circulating CRP as a marker of chronic inflammation and partly reflects the monocytic response to long-term inflammatory exposure: a Canadian longitudinal study on aging analysis. Aging Cell. 2023;22(7):e13863. https://doi.org/10.1111/acel.13863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a UCSF Bakar Aging Research Institute (BARI) Investigator Award and Buck Institute for Research on Aging intramural funds. Original sample collection was supported in part by R21AG067554.

Dr. LaHue is supported by R03AG074035, Larry L. Hillblom Foundation (A137420), UCSF Claude D. Pepper Older Americans Independence Center P30 AG044281, and the UCSF Bakar Aging Research Institute.

Dr. Furman is supported by Buck Bioinformatics Core, P01AG066591, U54AG075932, P01AI153559.

Dr. Lai is supported by R01AG059183, K24AG080021, P30DK026743.

Dr. Newman is supported by NIH R01AG068025 and Buck Institute Institutional Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara C. LaHue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 471 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LaHue, S.C., Fuentealba, M., Roa Diaz, S. et al. Association of biological aging with frailty and post-transplant outcomes among adults with cirrhosis. GeroScience 46, 3287–3295 (2024). https://doi.org/10.1007/s11357-024-01076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-024-01076-5

Keywords

Navigation