Skip to main content
Log in

Eliminating senescent cells by white adipose tissue–targeted senotherapy alleviates age-related hepatic steatosis through decreasing lipolysis

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Cellular senescence is an important risk factor in the development of hepatic steatosis. Senolytics present therapeutic effects on age-related hepatic steatosis without eliminating senescent hepatocytes directly. Therefore, it highlights the need to find senolytics’ therapeutic targets. Dysfunction of adipose tissue underlies the critical pathogenesis of lipotoxicity in the liver. However, the correlation between adipose tissue and hepatic steatosis during aging and its underlying molecular mechanism remains poorly understood. We explored the correlation between white adipose tissue (WAT) and the liver during aging and evaluated the effect of lipolysis of aged WAT on hepatic steatosis and hepatocyte senescence. We screened out the ideal senolytics for WAT and developed a WAT-targeted delivery system for senotherapy. We assessed senescence and lipolysis of WAT and hepatic lipid accumulation after treatment. The results displayed that aging accelerated cellular senescence and facilitated lipolysis of WAT. Free fatty acids (FFAs) generated by WAT during aging enhanced hepatic steatosis and induced hepatocyte senescence. The combined usage of dasatinib and quercetin was screened out as the ideal senolytics to eliminate senescent cells in WAT. To minimize non-specific distribution and enhance the effectiveness of senolytics, liposomes decorated with WAT affinity peptide P3 were constructed for senotherapy in vivo. In vivo study, WAT-targeted treatment eliminated senescent cells in WAT and reduced lipolysis, resulting in the alleviation of hepatic lipid accumulation and hepatocyte senescence when compared to non-targeted treatment, providing a novel tissue-targeted, effective and safe senotherapy for age-related hepatic steatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

WAT:

White adipose tissue

SCs:

Senescent cells

SASP:

Senescence-associated secretory phenotype

D:

Dasatinib

Q:

Quercetin

FFA:

Free fatty acid

ALT:

Alanine aminotransamine

TG:

Triglyceride

TCH:

Total cholesterol

H2O2 :

Hydrogen peroxide

BSA:

Bovine serum albumin

SA-β-gal:

Senescence-associated β-galactosidase

HPLC:

High-performance liquid chromatography

LE:

Loading efficiency

EE:

Entrapment efficiency

Cpt1α:

Carnitine palmitoyltransferase 1α

Ucp2:

Uncoupling protein 2

Accα:

Activated acetyl-CoA carboxylase

Acox1:

Acyl-CoA oxidase type 1

Scd1:

Stearoyl-CoA desaturase 1

References

  1. da Costa JP, et al. A synopsis on aging-theories, mechanisms and future prospects. Ageing Res Rev. 2016;29:90–112.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Palmer AK, Kirkland JL. Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. Exp Gerontol. 2016;86:97–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Childs BG, et al. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509(7501):439–46.

    Article  PubMed  PubMed Central  Google Scholar 

  5. He S, Sharpless NE. Senescence in health and disease. Cell. 2017;169(6):1000–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer. 2015;15(7):397–408.

    Article  CAS  PubMed  Google Scholar 

  7. Coppe JP, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68.

    Article  CAS  PubMed  Google Scholar 

  8. Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell. 2007;130(2):223–33.

    Article  CAS  PubMed  Google Scholar 

  9. Kim IH, Kisseleva T, Brenner DA. Aging and liver disease. Curr Opin Gastroenterol. 2015;31(3):184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramirez T, et al. Aging aggravates alcoholic liver injury and fibrosis in mice by downregulating sirtuin 1 expression. J Hepatol. 2017;66(3):601–9.

    Article  CAS  PubMed  Google Scholar 

  11. Alqahtani SA, Schattenberg JM. NAFLD in the elderly. Clin Interv Aging. 2021;16:1633–49.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cree MG, et al. Intramuscular and liver triglycerides are increased in the elderly. J Clin Endocrinol Metab. 2004;89(8):3864–71.

    Article  CAS  PubMed  Google Scholar 

  13. Fan JG, et al. Prevalence of and risk factors for fatty liver in a general population of Shanghai, China. J Hepatol. 2005;43(3):508–14.

    Article  PubMed  Google Scholar 

  14. Gong Z, et al. Hepatic lipid metabolism and non-alcoholic fatty liver disease in aging. Mol Cell Endocrinol. 2017;455:115–30.

    Article  CAS  PubMed  Google Scholar 

  15. Raza S, et al. Current treatment paradigms and emerging therapies for NAFLD/NASH. Front Biosci (Landmark Ed). 2021;26(2):206–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Triana-Martinez F, et al. Identification and characterization of cardiac glycosides as senolytic compounds. Nat Commun. 2019;10(1):4731.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roos CM, et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell. 2016;15(5):973–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ogrodnik M, et al. Obesity-Induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 2019;29(5):1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ogrodnik M, et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 2017;8:15691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raffaele M, et al. Mild exacerbation of obesity- and age-dependent liver disease progression by senolytic cocktail dasatinib + quercetin. Cell Commun Signal. 2021;19(1):44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bedossa P, et al. Systematic review of bariatric surgery liver biopsies clarifies the natural history of liver disease in patients with severe obesity. Gut. 2017;66(9):1688–96.

    Article  CAS  PubMed  Google Scholar 

  22. Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576(7785):51–60.

    Article  CAS  PubMed  Google Scholar 

  23. Tchkonia T, et al. Fat tissue, aging, and cellular senescence. Aging Cell. 2010;9(5):667–84.

    Article  CAS  PubMed  Google Scholar 

  24. Frasca D, Blomberg BB. Adipose tissue, immune aging, and cellular senescence. Semin Immunopathol. 2020;42(5):573–87.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lutz W, Sanderson W, Scherbov S. The coming acceleration of global population ageing. Nature. 2008;451(7179):716–9.

    Article  CAS  PubMed  Google Scholar 

  26. Green CJ, Hodson L. The influence of dietary fat on liver fat accumulation. Nutrients. 2014;6(11):5018–33.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li X, Wang H. Multiple organs involved in the pathogenesis of non-alcoholic fatty liver disease. Cell Biosci. 2020;10(1):140.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu YY, et al. Hydrogen sulfide protects SH-SY5Y neuronal cells against d-galactose induced cell injury by suppression of advanced glycation end products formation and oxidative stress. Neurochem Int. 2013;62(5):603–9.

    Article  CAS  PubMed  Google Scholar 

  29. Duan J, et al. Irreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes and telomere shortening. Int J Biochem Cell Biol. 2005;37(7):1407–20.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol Biol. 2017;1522:17–22.

    Article  CAS  PubMed  Google Scholar 

  31. Huang X, et al. ICAM-1-targeted liposomes loaded with liver X receptor agonists suppress PDGF-induced proliferation of vascular smooth muscle cells. Nanoscale Res Lett. 2017;12(1):322.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tang X, et al. Improved antifungal activity of amphotericin B-loaded TPGS-b-(PCL-ran-PGA) nanoparticles. Int J Clin Exp Med. 2015;8(4):5150–62.

    PubMed  PubMed Central  Google Scholar 

  33. Azman KF, Zakaria R. D-Galactose-induced accelerated aging model: an overview. Biogerontology. 2019;20(6):763–82.

    Article  PubMed  Google Scholar 

  34. Lee GH, et al. Anthocyanins attenuate endothelial dysfunction through regulation of uncoupling of nitric oxide synthase in aged rats. Aging Cell. 2020;19(12):e13279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Toussaint O, Medrano EE, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol. 2000;35(8):927–45.

    Article  CAS  PubMed  Google Scholar 

  36. Yang X, et al. The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab. 2010;11(3):194–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirkland JL, et al. The clinical potential of senolytic drugs. J Am Geriatr Soc. 2017;65(10):2297–301.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang L, et al. Recent advances in the discovery of senolytics. Mech Ageing Dev. 2021;200:111587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu M, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kolonin MG, et al. Reversal of obesity by targeted ablation of adipose tissue. Nat Med. 2004;10(6):625–32.

    Article  CAS  PubMed  Google Scholar 

  41. Xue Y, et al. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci U S A. 2016;113(20):5552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Medina J, Moreno-Otero R. Pathophysiological basis for antioxidant therapy in chronic liver disease. Drugs. 2005;65(17):2445–61.

    Article  CAS  PubMed  Google Scholar 

  43. Mari M, et al. Redox control of liver function in health and disease. Antioxid Redox Signal. 2010;12(11):1295–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med. 2012;52(1):59–69.

    Article  CAS  PubMed  Google Scholar 

  45. Papatheodoridi AM, et al. The role of senescence in the development of nonalcoholic fatty liver disease and progression to nonalcoholic steatohepatitis. Hepatology. 2020;71(1):363–74.

    Article  CAS  PubMed  Google Scholar 

  46. Fernandez-Real JM, et al. Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J Clin Endocrinol Metab. 2001;86(3):1154–9.

    Article  CAS  PubMed  Google Scholar 

  47. du Plessis J, et al. Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease. Gastroenterology. 2015;149(3):635–48 e14.

    Article  PubMed  Google Scholar 

  48. Baker DJ, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu M, et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife. 2015;4:e12997.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Farr JN, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine. 2017;21:21–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Day CP, James OF. Steatohepatitis: a tale of two "hits"? Gastroenterology. 1998;114(4):842–5.

    Article  CAS  PubMed  Google Scholar 

  53. Liu J, et al. The role of fibroblast growth factor 21 in the pathogenesis of non-alcoholic fatty liver disease and implications for therapy. Metabolism. 2015;64(3):380–90.

    Article  CAS  PubMed  Google Scholar 

  54. Zhu Y, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Garcia-Gomez A, et al. Dasatinib as a bone-modifying agent: anabolic and anti-resorptive effects. PLoS One. 2012;7(4):e34914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vandyke K, et al. The tyrosine kinase inhibitor dasatinib dysregulates bone remodeling through inhibition of osteoclasts in vivo. J Bone Miner Res. 2010;25(8):1759–70.

    Article  CAS  PubMed  Google Scholar 

  57. Zoico E, et al. Senolytic effects of quercetin in an in vitro model of pre-adipocytes and adipocytes induced senescence. Sci Rep. 2021;11(1):23237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hartmann JT, et al. Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr Drug Metab. 2009;10(5):470–81.

    Article  CAS  PubMed  Google Scholar 

  59. Munoz-Espin D, et al. Programmed cell senescence during mammalian embryonic development. Cell. 2013;155(5):1104–18.

    Article  CAS  PubMed  Google Scholar 

  60. Demaria M, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cox LS, Redman C. The role of cellular senescence in ageing of the placenta. Placenta. 2017;52:139–45.

    Article  CAS  PubMed  Google Scholar 

  62. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2(10):750–63.

    Article  CAS  PubMed  Google Scholar 

  63. Garcia-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, Sarabia F, Prados J, Melguizo C, et al. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials. 2019;9(4):638. https://doi.org/10.3390/nano9040638.

  64. Tenchov R, et al. Lipid nanoparticles horizontal line from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15(11):16982–7015.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Key Research and Development Program of China (2021YFA1100603), the National Natural Science Foundation of China (82071092, U21A20369), the Sichuan Science and Technology program (2023YFS0056, 2022YFS0126), and the Fundamental Research Funds for the Central Universities (2021SCU12140).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weidong Tian or Li Liao.

Ethics declarations

Ethics approval statement

All animal procedures were performed under the relevant guidelines and approved by the Institutional Animal Care and Use Committee (IACUC) at West China Hospital of Stomatology (WCHSIRB-D-2019-034).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 10.2 mb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Xing, X., Huang, H. et al. Eliminating senescent cells by white adipose tissue–targeted senotherapy alleviates age-related hepatic steatosis through decreasing lipolysis. GeroScience 46, 3149–3167 (2024). https://doi.org/10.1007/s11357-024-01068-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-024-01068-5

Keywords

Navigation