Skip to main content

Advertisement

Log in

The combination of hyperventilation test and graph theory parameters to characterize EEG changes in mild cognitive impairment (MCI) condition

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Hyperventilation (HV) is a voluntary activity that causes changes in the neuronal firing characteristics noticeable in the electroencephalogram (EEG) signals. HV-related changes have been scribed to modulation of pO2/pCO2 blood contents. Therefore, an HV test is routinely used for highlighting brain abnormalities including those depending to neurobiological mechanisms at the basis of neurodegenerative disorders. The main aim of the present paper is to study the effectiveness of HV test in modifying the functional connectivity from the EEG signals that can be typical of a prodromal state of Alzheimer’s disease (AD), the Mild Cognitive Impairment prodromal to Alzheimer condition. MCI subjects and a group of age-matched healthy elderly (Ctrl) were enrolled and subjected to EEG recording during HV, eyes-closed (EC), and eyes-open (EO) conditions. Since the cognitive decline in MCI seems to be a progressive disconnection syndrome, the approach we used in the present study is the graph theory, which allows to describe brain networks with a series of different parameters. Small world (SW), modularity (M), and global efficiency (GE) indexes were computed among the EC, EO, and HV conditions comparing the MCI group to the Ctrl one. All the three graph parameters, computed in the typical EEG frequency bands, showed significant changes among the three conditions, and more interestingly, a significant difference in the GE values between the MCI group and the Ctrl one was obtained, suggesting that the combination of HV test and graph theory parameters should be a powerful tool for the detection of possible cerebral dysfunction and alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Van der Worp HB, Kraaier V, Wieneke GH, Van Huffelen AC. Quantitative EEG during progressive hypocarbia and hypoxia. Hyperventilation-induced EEG changes reconsidered. Electroencephalogr Clin Neurophysiol. 1991;79(5):335–41. https://doi.org/10.1016/0013-4694(91)90197-c.

    Article  PubMed  Google Scholar 

  2. Mazzucchi E, et al. Hyperventilation in patients with focal epilepsy: electromagnetic tomography, functional connectivity and graph theory - a possible tool in epilepsy diagnosis? J Clin Neurophysiol. 2017;34(1):92–9. https://doi.org/10.1097/WNP.0000000000000329.

    Article  PubMed  Google Scholar 

  3. Mäkiranta MJ, et al. BOLD-contrast functional MRI signal changes related to intermittent rhythmic delta activity in EEG during voluntary hyperventilation-simultaneous EEG and fMRI study. Neuroimage. 2004;22(1):222–31. https://doi.org/10.1016/j.neuroimage.2004.01.004.

    Article  PubMed  Google Scholar 

  4. Khachidze I, Gugushvili M, Advadze M. EEG characteristics to hyperventilation by age and sex in patients with various neurological disorders. Front Neurol. 2021;12:727297. https://doi.org/10.3389/fneur.2021.727297.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Plouin P, Kaminska A, Moutard ML, Soufflet C. Developmental aspects of normal EEG. Handb Clin Neurol. 2013;111:79–85. https://doi.org/10.1016/B978-0-444-52891-9.00007-5.

    Article  PubMed  Google Scholar 

  6. Kennealy JA, Penovich PE, Moore-Nease SE. EEG and spectral analysis in acute hyperventilation. Electroencephalogr Clin Neurophysiol. 1986;63(2):98–106. https://doi.org/10.1016/0013-4694(86)90002-7.

    Article  CAS  PubMed  Google Scholar 

  7. Brian JE. Carbon dioxide and the cerebral circulation. Anesthesiology. 1998;88(5):1365–86. https://doi.org/10.1097/00000542-199805000-00029.

    Article  PubMed  Google Scholar 

  8. Petersen RC, et al. Apolipoprotein E status as a predictor of the development of Alzheimer's disease in memory-impaired individuals. JAMA. 1995;273(16):1274–8.

    Article  CAS  PubMed  Google Scholar 

  9. Petersen RC, et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58:1985–92. https://doi.org/10.1001/archneur.58.12.1985.

    Article  CAS  PubMed  Google Scholar 

  10. Scheltens P, Fox N, Barkhof F, De Carli C. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol. 2002;1(1):13–21. https://doi.org/10.1016/s1474-4422(02)00002-9.

    Article  PubMed  Google Scholar 

  11. Ponomareva NV, Korovaitseva GI, Rogaev EI. EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease. Neurobiol Aging. 2008;29(6):819–27. https://doi.org/10.1016/j.neurobiolaging.2006.12.019.

    Article  CAS  PubMed  Google Scholar 

  12. Vecchio F, Miraglia F, Bramanti P, Rossini PM. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data. J Alzheimers Dis. 2014;41(4):1239–49. https://doi.org/10.3233/JAD-140090.

    Article  PubMed  Google Scholar 

  13. Rossini PM, Di Iorio R, Granata G, Miraglia F, Vecchio F. From mild cognitive impairment to Alzheimer's disease: a new perspective in the "Land" of human brain reactivity and connectivity. J Alzheimers Dis. 2016;53(4):1389–93. https://doi.org/10.3233/jad-160482.

    Article  PubMed  Google Scholar 

  14. Miraglia F, et al. Brain connectivity and graph theory analysis in Alzheimer's and Parkinson's disease: the contribution of electrophysiological techniques. Brain Sci. 2022;12(3):402. https://doi.org/10.3390/brainsci12030402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Başar E, Schürmann M. Toward new theories of brain function and brain dynamics. Int J Psychophysiol. 2001;39(2-3):87–9. https://doi.org/10.1016/s0167-8760(00)00134-3.

    Article  PubMed  Google Scholar 

  16. Miller EK, Wilson MA. All my circuits: using multiple electrodes to understand functioning neural networks. Neuron. 2008;60(3):483–8. https://doi.org/10.1016/j.neuron.2008.10.033.

    Article  CAS  PubMed  Google Scholar 

  17. Friston KJ, Büchel C. CHAPTER 37 - Functional connectivity: eigenimages and multivariate analyses. In: Friston K, Ashburner J, Kiebel S, Nichols T, Penny W, editors. Statistical parametric mapping: Academic Press; 2007. p. 492–507. https://doi.org/10.1016/B978-012372560-8/50037-1.

    Chapter  Google Scholar 

  18. Vecchio F, Miraglia F, Maria RP. Connectome: graph theory application in functional brain network architecture. Clin Neurophysiol Pract. 2017;2:206–13. https://doi.org/10.1016/j.cnp.2017.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vecchio F, et al. Graph theory on brain cortical sources in Parkinson's disease: the analysis of 'Small World' organization from EEG. Sensors (Basel). 2021;21(21):31. https://doi.org/10.3390/s21217266.

    Article  Google Scholar 

  20. Winblad B, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240–6. https://doi.org/10.1111/j.1365-2796.2004.01380.x.

    Article  CAS  PubMed  Google Scholar 

  21. Petersen RC. Clinical practice. Mild cognitive impairment. N Engl J Med. 2011;364(23):2227–34. https://doi.org/10.1056/NEJMcp0910237.

    Article  CAS  PubMed  Google Scholar 

  22. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34(7):939–44. https://doi.org/10.1212/wnl.34.7.939.

    Article  CAS  PubMed  Google Scholar 

  23. Miraglia F, et al. Assessing the dependence of the number of EEG channels in the brain networks' modulations. Brain Res Bull. 2021;167:33–6. https://doi.org/10.1016/j.brainresbull.2020.11.014.

    Article  PubMed  Google Scholar 

  24. Pappalettera C, Miraglia F, Cotelli M, Rossini PM, Vecchio F. Analysis of complexity in the EEG activity of Parkinson's disease patients by means of approximate entropy. Geroscience. 2022;44(3):1599–607. https://doi.org/10.1007/s11357-022-00552-0.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vecchio F, Miraglia F, Judica E, Cotelli M, Alù F, Rossini PM. Human brain networks: a graph theoretical analysis of cortical connectivity normative database from EEG data in healthy elderly subjects. Geroscience. 2020;42(2):575–84. https://doi.org/10.1007/s11357-020-00176-2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vecchio F, Miraglia F, Alù F, Menna M, Judica E, Cotelli M, Rossini PM. Classification of Alzheimer's disease with respect to physiological aging with innovative EEG biomarkers in a machine learning implementation. J Alzheimers Dis. 2020;75(4):1253–61. https://doi.org/10.3233/JAD-200171.

    Article  PubMed  Google Scholar 

  27. Pappalettera C, Cacciotti A, Nucci L, Miraglia F, Rossini PM, Vecchio F. Approximate entropy analysis across electroencephalographic rhythmic frequency bands during physiological aging of human brain. Geroscience. 2022. https://doi.org/10.1007/s11357-022-00710-4.

  28. Hoffmann S, Falkenstein M. The correction of eye blink artefacts in the EEG: a comparison of two prominent methods. PLoS One. 2008;3(8):e3004. https://doi.org/10.1371/journal.pone.0003004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iriarte J, et al. Independent component analysis as a tool to eliminate artifacts in EEG: A quantitative study. J Clin Neurophysiol. 2003;20(4):249–57. https://doi.org/10.1097/00004691-200307000-00004.

    Article  PubMed  Google Scholar 

  30. Jung TP, et al. Removing electroencephalographic artifacts by blind source separation. Psychophysiology. 2000;37(2):163–78.

    Article  CAS  PubMed  Google Scholar 

  31. Vecchio F, Nucci L, Pappalettera C, Miraglia F, Iacoviello D, Rossini PM. Time-frequency analysis of brain activity in response to directional and non-directional visual stimuli: an event related spectral perturbations (ERSP) study. J Neural Eng. 2022;19(6). https://doi.org/10.1088/1741-2552/ac9c96.

  32. Mulert C, et al. Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage. 2004;22(1):83–94. https://doi.org/10.1016/j.neuroimage.2003.10.051.

    Article  PubMed  Google Scholar 

  33. Vitacco D, Brandeis D, Pascual-Marqui R, Martin E. Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum Brain Mapp. 2002;17(1):4–12. https://doi.org/10.1002/hbm.10038.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Worrell GA, et al. Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topogr. 2000;12(4):273–82.

    Article  CAS  PubMed  Google Scholar 

  35. Dierks T, et al. Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer's disease. Clin Neurophysiol. 2000;111:1817–24.

    Article  CAS  PubMed  Google Scholar 

  36. Pizzagalli DA, et al. Functional but not structural subgenual prefrontal cortex abnormalities in melancholia. Mol Psychiatry. 2004;9(4):393–405. https://doi.org/10.1038/sj.mp.4001469.

    Article  Google Scholar 

  37. Zumsteg D, Wennberg RA, Treyer V, Buck A, Wieser HG. H2(15) O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus. Neurology. 2005;65(10):1657–60. https://doi.org/10.1212/01.wnl.0000184516.32369.1a.

    Article  CAS  PubMed  Google Scholar 

  38. Vecchio F, et al. Human brain networks in physiological and pathological aging: reproducibility of electroencephalogram graph theoretical analysis in cortical connectivity. Brain Connect. 2022;12(1):41–51. https://doi.org/10.1089/brain.2020.0824.

    Article  PubMed  Google Scholar 

  39. Kubicki S, Herrmann WM, Fichte K, Freund G. Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmakopsychiatr Neuropsychopharmakol. 1979;12(2):237–45. https://doi.org/10.1055/s-0028-1094615.

    Article  CAS  PubMed  Google Scholar 

  40. Pascual-Marqui RD. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv:0710.3341 [math-ph]. 2007; http://arxiv.org/pdf/0710.3341.

  41. Pascual-Marqui RD, et al. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans A Math Phys Eng Sci. 1952;2011(369):3768–84. https://doi.org/10.1098/rsta.2011.0081.

    Article  Google Scholar 

  42. Watts DJ, Strogatz SH. Collective dynamics of 'small-world' networks. Nature. 1998;393(6684):440–2. https://doi.org/10.1038/30918.

    Article  CAS  PubMed  Google Scholar 

  43. Vecchio F, Pappalettera C, Miraglia F, Deinite G, Manenti R, Judica E, Caliandro P, Rossini PM. Prognostic role of hemispherical functional connectivity in stroke: a study via graph theory versus coherence of electroencephalography rhythms. Stroke. 2022. https://doi.org/10.1161/STROKEAHA.122.040747.

  44. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–69. https://doi.org/10.1016/j.neuroimage.2009.10.003.

    Article  PubMed  Google Scholar 

  45. Vecchio F, et al. Sustainable method for Alzheimer dementia prediction in mild cognitive impairment: electroencephalographic connectivity and graph theory combined with apolipoprotein E. Ann Neurol. 2018;84(2):302–14. https://doi.org/10.1002/ana.25289.

    Article  CAS  PubMed  Google Scholar 

  46. Miraglia F, Vecchio F, Rossini PM. Brain electroencephalographic segregation as a biomarker of learning. Neural Netw. 2018;106:168–74. https://doi.org/10.1016/j.neunet.2018.07.005.

    Article  PubMed  Google Scholar 

  47. Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(19):198701. https://doi.org/10.1103/PhysRevLett.87.198701.

    Article  CAS  PubMed  Google Scholar 

  48. Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist. 2006;12(6):512–23. https://doi.org/10.1177/1073858406293182.

    Article  PubMed  Google Scholar 

  49. Siddiqui SR, Zafar A, Khan FS, Shaheen M. Effect of hyperventilation on electroencephalographic activity. J Pak Med Assoc. 2011;61(9):850–2.

    PubMed  Google Scholar 

  50. Hallett M, et al. Human brain connectivity: clinical applications for clinical neurophysiology. Clin Neurophysiol. 2020;131(7):1621–51. https://doi.org/10.1016/j.clinph.2020.03.031.

    Article  PubMed  Google Scholar 

  51. Tan B, Kong X, Yang P, Jin Z, Li L. The difference of brain functional connectivity between eyes-closed and eyes-open using graph theoretical analysis. Comput Math Methods Med. 2013;2013:976365. https://doi.org/10.1155/2013/976365.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Miraglia F, Vecchio F, Bramanti P, Rossini PM. EEG characteristics in "eyes-open" versus "eyes-closed" conditions: small-world network architecture in healthy aging and age-related brain degeneration. Clin Neurophysiol. 2016;127(2):1261–8. https://doi.org/10.1016/j.clinph.2015.07.040.

    Article  PubMed  Google Scholar 

  53. Wang Y, et al. Open eyes increase neural oscillation and enhance effective brain connectivity of the default mode network: resting-state electroencephalogram research. Front Neurosci. 2022;16:861247. https://doi.org/10.3389/fnins.2022.861247.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012;13(5):336–49. https://doi.org/10.1038/nrn3214.

    Article  CAS  PubMed  Google Scholar 

  55. Wei C, et al. A comparative study of structural and metabolic brain networks in patients with mild cognitive impairment. Front Aging Neurosci. 2021;13:774607. https://doi.org/10.3389/fnagi.2021.774607.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Youssef N, et al. Functional brain networks in mild cognitive impairment based on resting electroencephalography signals. Front Comput Neurosci. 2021;15:698386. https://doi.org/10.3389/fncom.2021.698386.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vecchio F, et al. Cortical brain connectivity evaluated by graph theory in dementia: A correlation study between functional and structural data. J Alzheimers Dis. 2015;45(3):745–56. https://doi.org/10.3233/JAD-142484.

    Article  PubMed  Google Scholar 

  58. Franciotti R, et al. Cortical network topology in prodromal and mild dementia due to Alzheimer's disease: Graph theory applied to resting state EEG. Brain Topogr. 2019;32(1):127–41. https://doi.org/10.1007/s10548-018-0674-3.

    Article  PubMed  Google Scholar 

  59. Stanley ML, Simpson SL, Dagenbach D, Lyday RG, Burdette JH, Laurienti PJ. Changes in brain network efficiency and working memory performance in aging. PLoS One. 2015;10(4):e0123950. https://doi.org/10.1371/journal.pone.0123950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mazzucchi E, et al. 6. Hyperventilation increases brain connectivity in healthy subjects and in focal cryptogenic epileptic patients. Clin Neurophysiol. 2015;126(1):e2. https://doi.org/10.1016/j.clinph.2014.10.025.

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the Italian Ministry of Health for Institutional Research (Ricerca corrente), for the project “Prediction of conversion from Mild Cognitive Impairment to Alzheimer’s disease based on TMS-EEG biomarkers” (GR-2016-02361802) and by Toto Holding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Miraglia.

Ethics declarations

Authors’ disclosure statements

None of the authors have potential conflicts of interest to be disclosed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miraglia, F., Pappalettera, C., Guglielmi, V. et al. The combination of hyperventilation test and graph theory parameters to characterize EEG changes in mild cognitive impairment (MCI) condition. GeroScience 45, 1857–1867 (2023). https://doi.org/10.1007/s11357-023-00733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-023-00733-5

Keywords

Navigation