Skip to main content

Advertisement

Log in

Novel immortalization approach defers senescence of cultured canine adipose-derived mesenchymal stromal cells

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

In the last decades, the scientific community spared no effort to elucidate the therapeutic potential of mesenchymal stromal cells (MSCs). Unfortunately, in vitro cellular senescence occurring along with a loss of proliferative capacity is a major drawback in view of future therapeutic applications of these cells in the field of regenerative medicine. Even though insight into the mechanisms of replicative senescence in human medicine has evolved dramatically, knowledge about replicative senescence of canine MSCs is still scarce. Thus, we developed a high-content analysis workflow to simultaneously investigate three important characteristics of senescence in canine adipose-derived MSCs (cAD-MSCs): morphological changes, activation of the cell cycle arrest machinery, and increased activity of the senescence-associated β-galactosidase. We took advantage of this tool to demonstrate that passaging of cAD-MSCs results in the appearance of a senescence phenotype and proliferation arrest. This was partially prevented upon immortalization of these cells using a newly designed PiggyBac™ Transposon System, which allows for the expression of the human polycomb ring finger proto-oncogene BMI1 and the human telomerase reverse transcriptase under the same promotor. Our results indicate that cAD-MSCs immortalized with this new vector maintain their proliferation capacity and differentiation potential for a longer time than untreated cAD-MSCs. This study not only offers a workflow to investigate replicative senescence in eukaryotic cells with a high-content analysis approach but also paves the way for a rapid and effective generation of immortalized MSC lines. This promotes a better understanding of these cells in view of future applications in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The image analysis pipelines are available in the following GitHub repository: https://github.com/StojiljkovicVetAna/HCA-to-investigate-senescence.

The Shiny App to navigate the single-cell data generated for this study is available at: https://anastojiljkovic.shinyapps.io/shiny_morpho/.

References

  1. Cossu G, Birchall M, Brown T, de Coppi P, Culme-Seymour E, Gibbon S, et al. Lancet Commission: Stem cells and regenerative medicine. Lancet. 2018;391:883–910. https://doi.org/10.1016/S0140-6736(17)31366-1.

    Article  PubMed  Google Scholar 

  2. Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol. 2013;9:584–94. https://doi.org/10.1038/nrrheum.2013.109.

    Article  CAS  PubMed  Google Scholar 

  3. Roura S, Gálvez-Montón C, Mirabel C, Vives J, Bayes-Genis A. Mesenchymal stem cells for cardiac repair: are the actors ready for the clinical scenario? Stem Cell Res Ther. 2017;8:238. https://doi.org/10.1186/s13287-017-0695-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang M, Yuan Q, Xie L. Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells Int. 2018;2018:3057624. https://doi.org/10.1155/2018/3057624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chulpanova DS, Kitaeva KV, Tazetdinova LG, James V, Rizvanov AA, Solovyeva VV. Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment. Front Pharmacol. 2018;9:259. https://doi.org/10.3389/fphar.2018.00259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7. https://doi.org/10.1080/14653240600855905.

    Article  CAS  PubMed  Google Scholar 

  7. Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med. 2019. https://doi.org/10.1002/term.2914.

    Article  PubMed  Google Scholar 

  8. McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces. 2017;159:62–77. https://doi.org/10.1016/j.colsurfb.2017.07.051.

    Article  CAS  PubMed  Google Scholar 

  9. Turinetto V, Vitale E, Giachino C. Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17071164.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Campisi J, Di d’Adda FF. Cellular senescence: When bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40. https://doi.org/10.1038/nrm2233.

    Article  CAS  PubMed  Google Scholar 

  11. LeBrasseur NK, Tchkonia T, Kirkland JL. Cellular Senescence and the Biology of Aging, Disease, and Frailty. Nestle Nutr Inst Workshop Ser. 2015;83:11–8. https://doi.org/10.1159/000382054.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Estrada JC, Torres Y, Benguría A, Dopazo A, Roche E, Carrera-Quintanar L, et al. Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy. Cell Death Dis. 2013;4: e691. https://doi.org/10.1038/cddis.2013.211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fridman AL, Tainsky MA. Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene. 2008;27:5975–87. https://doi.org/10.1038/onc.2008.213.

    Article  CAS  PubMed  Google Scholar 

  14. Kassem M, Abdallah BM, Yu Z, Ditzel N, Burns JS. The use of hTERT-immortalized cells in tissue engineering. Cytotechnology. 2004;45:39–46. https://doi.org/10.1007/s10616-004-5124-2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang X, Soda Y, Takahashi K, Bai Y, Mitsuru A, Igura K, et al. Successful immortalization of mesenchymal progenitor cells derived from human placenta and the differentiation abilities of immortalized cells. Biochem Biophys Res Commun. 2006;351:853–9. https://doi.org/10.1016/j.bbrc.2006.10.125.

    Article  CAS  PubMed  Google Scholar 

  16. Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. Int J Biochem Cell Biol. 2005;37:961–76. https://doi.org/10.1016/j.biocel.2004.10.013.

    Article  CAS  PubMed  Google Scholar 

  17. Tátrai P, Szepesi Á, Matula Z, Szigeti A, Buchan G, Mádi A, et al. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation. Biochem Biophys Res Commun. 2012;422:28–35. https://doi.org/10.1016/j.bbrc.2012.04.088.

    Article  CAS  PubMed  Google Scholar 

  18. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol. 2018;28:436–53. https://doi.org/10.1016/j.tcb.2018.02.001.

    Article  CAS  PubMed  Google Scholar 

  19. Krešić N, Šimić I, Lojkić I, Bedeković T. Canine Adipose Derived Mesenchymal Stem Cells Transcriptome Composition Alterations: A Step towards Standardizing Therapeutic. Stem Cells International. 2017;2017:4176292. https://doi.org/10.1155/2017/4176292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Z, Screven R, Boxer L, Myers MJ, Devireddy LR. Characterization of Canine Adipose-Derived Mesenchymal Stromal/Stem Cells in Serum-Free Medium. Tissue Eng Part C Methods. 2018;24:399–411. https://doi.org/10.1089/ten.TEC.2017.0409.

    Article  CAS  PubMed  Google Scholar 

  21. Lee J, Byeon JS, Lee KS, Gu N-Y, Lee GB, Kim H-R, et al. Chondrogenic potential and anti-senescence effect of hypoxia on canine adipose mesenchymal stem cells. Vet Res Commun. 2016;40:1–10. https://doi.org/10.1007/s11259-015-9647-0.

    Article  CAS  PubMed  Google Scholar 

  22. Guercio A, Di Marco P, Casella S, Cannella V, Russotto L, Purpari G, et al. Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol Int. 2012;36:189–94. https://doi.org/10.1042/CBI20110304.

    Article  CAS  PubMed  Google Scholar 

  23. Linon E, Spreng D, Rytz U, Forterre S. Engraftment of autologous bone marrow cells into the injured cranial cruciate ligament in dogs. Vet J. 2014;202:448–54. https://doi.org/10.1016/j.tvjl.2014.08.031.

    Article  CAS  PubMed  Google Scholar 

  24. de Bakker E, van Ryssen B, de Schauwer C, Meyer E. Canine mesenchymal stem cells: state of the art, perspectives as therapy for dogs and as a model for man. Vet Q. 2013;33:225–33. https://doi.org/10.1080/01652176.2013.873963.

    Article  PubMed  Google Scholar 

  25. Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006;5:187–95. https://doi.org/10.1111/j.1474-9726.2006.00199.x.

    Article  CAS  PubMed  Google Scholar 

  26. Gary RK, Kindell SM. Quantitative assay of senescence-associated beta-galactosidase activity in mammalian cell extracts. Anal Biochem. 2005;343:329–34. https://doi.org/10.1016/j.ab.2005.06.003.

    Article  CAS  PubMed  Google Scholar 

  27. van Tonder A, Joubert AM, Cromarty AD. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes. 2015;8:47. https://doi.org/10.1186/s13104-015-1000-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Legzdina D, Romanauska A, Nikulshin S, Kozlovska T, Berzins U. Characterization of Senescence of Culture-expanded Human Adipose-derived Mesenchymal Stem Cells. Int J Stem Cells. 2016;9:124–36. https://doi.org/10.15283/ijsc.2016.9.1.124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sobecki M, Mrouj K, Camasses A, Parisis N, Nicolas E, Llères D, et al. The cell proliferation antigen Ki-67 organises heterochromatin. Elife. 2016;5: e13722. https://doi.org/10.7554/eLife.13722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE. 2008;3: e2213. https://doi.org/10.1371/journal.pone.0002213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shimono Y, Mukohyama J, Nakamura S-I, Minami H. MicroRNA Regulation of Human Breast Cancer Stem Cells. J Clin Med. 2015. https://doi.org/10.3390/jcm5010002.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Neault M, Couteau F, Bonneau É, de Guire V, Mallette FA. Molecular Regulation of Cellular Senescence by MicroRNAs: Implications in Cancer and Age-Related Diseases. Int Rev Cell Mol Biol. 2017;334:27–98. https://doi.org/10.1016/bs.ircmb.2017.04.001.

    Article  CAS  PubMed  Google Scholar 

  33. Itahana K, Campisi J, Dimri GP. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol. 2007;371:21–31. https://doi.org/10.1007/978-1-59745-361-5_3.

    Article  CAS  PubMed  Google Scholar 

  34. Burton DGA, Krizhanovsky V. Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci. 2014;71:4373–86. https://doi.org/10.1007/s00018-014-1691-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oja S, Kaartinen T, Ahti M, Korhonen M, Laitinen A, Nystedt J. The Utilization of Freezing Steps in Mesenchymal Stromal Cell (MSC) Manufacturing: Potential Impact on Quality and Cell Functionality Attributes. Front Immunol. 2019;10:1627. https://doi.org/10.3389/fimmu.2019.01627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shay JW, Wright WE. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis. 2005;26:867–74. https://doi.org/10.1093/carcin/bgh296.

    Article  CAS  PubMed  Google Scholar 

  37. Choi W, Kim E, Yum S-Y, Lee C, Lee J, Moon J, et al. Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells. Prion. 2015;9:278–91. https://doi.org/10.1080/19336896.2015.1071459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang G, Yang L, Grishin D, Rios X, Ye LY, Hu Y, et al. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies. Nat Protoc. 2017;12:88–103. https://doi.org/10.1038/nprot.2016.152.

    Article  CAS  PubMed  Google Scholar 

  39. Moran DM, Shen H, Maki CG. Puromycin-based vectors promote a ROS-dependent recruitment of PML to nuclear inclusions enriched with HSP70 and Proteasomes. BMC Cell Biol. 2009;10:32. https://doi.org/10.1186/1471-2121-10-32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng H, Qiu L, Ma J, Zhang H, Cheng M, Li W, et al. Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Mol Biol Rep. 2011;38:5161–8. https://doi.org/10.1007/s11033-010-0665-2.

    Article  CAS  PubMed  Google Scholar 

  41. Fick LJ, Fick GH, Li Z, Cao E, Bao B, Heffelfinger D, et al. Telomere length correlates with life span of dog breeds. Cell Rep. 2012;2:1530–6. https://doi.org/10.1016/j.celrep.2012.11.021.

    Article  CAS  PubMed  Google Scholar 

  42. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods. 2008;45:115–20. https://doi.org/10.1016/j.ymeth.2008.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Neupane M, Chang C-C, Kiupel M, Yuzbasiyan-Gurkan V. Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng Part A. 2008;14:1007–15. https://doi.org/10.1089/tea.2007.0207.

    Article  CAS  PubMed  Google Scholar 

  44. Matasci M, Baldi L, Hacker DL, Wurm FM. The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability. Biotechnol Bioeng. 2011;108:2141–50. https://doi.org/10.1002/bit.23167.

    Article  CAS  PubMed  Google Scholar 

  45. Han Z, Wei W, Dunaway S, Darnowski JW, Calabresi P, Sedivy J, et al. Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J Biol Chem. 2002;277:17154–60. https://doi.org/10.1074/jbc.M112401200.

    Article  CAS  PubMed  Google Scholar 

  46. Head ML, Holman L, Lanfear R, Kahn AT, Jennions MD. The extent and consequences of p-hacking in science. PLoS Biol. 2015;13: e1002106. https://doi.org/10.1371/journal.pbio.1002106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the kind support of the staff from the Small Animal Clinic, Vetsuisse Faculty Bern and the assistance of Helga Mogel in the lab. We also thank Philippe Plattet and Marianne Wyss for providing us with plasmids and helping with cloning. We thank Meike Mevissen, Angélique Ducray, Volker Enzmann and Simone Forterre for helpful discussions. This study was performed with the support of the interfaculty Microscopy Imaging Center (MIC) of the University of Bern.

Funding

This work was funded by the Division of Veterinary Anatomy, University of Bern, Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

AS designed the high-content analysis approach, wrote the manuscript and created the figures with the support of JB and MHS. AS designed and created the Shiny App for the navigation of the single-cell data. AS performed all the experiments with the help of VG for cell culture and molecular biology. FF and UR organized the collection of the tissue samples.

Corresponding author

Correspondence to Ana Stojiljković.

Ethics declarations

Ethics approval

The tissue samples were collected after owner informed consent.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojiljković, A., Gaschen, V., Forterre, F. et al. Novel immortalization approach defers senescence of cultured canine adipose-derived mesenchymal stromal cells. GeroScience 44, 1301–1323 (2022). https://doi.org/10.1007/s11357-021-00488-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00488-x

Keywords

Navigation