Skip to main content

Advertisement

Log in

Growth hormone increases DNA damage in ovarian follicles and macrophage infiltration in the ovaries

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Evidence points to an important role of the growth hormone (GH) in the aging process and longevity. GH-deficient mice are smaller, live longer than normal littermates, and females have an increased ovarian reserve. The aim of the study was to evaluate the role of GH in the ovarian reserve by evaluating DNA damage, macrophage infiltration, and granulosa cell number in primordial and primary follicles. Experiment 1 used GH-deficient Ames dwarf mice (df/df, n = 12) and their normal littermates (N/df, n = 12), receiving GH or saline injections. Experiment 2 included transgenic mice overexpressing bovine GH (bGH) (n = 6) and normal mice (N, n = 6). DNA damage (anti-γH2AX) and macrophage counting (anti-CD68) were evaluated by immunofluorescence. Female df/df mice had lower γH2AX foci intensity in both oocytes and granulosa cells of primordial and primary follicles (p < 0.05), indicating fewer DNA double-strand breaks (DSBs). GH treatment increased DSBs in both df/df and N/df mice. Inversely, bGH mice had a higher quantity of DSBs in both oocytes and granulosa cells of primordial and primary follicles (p < 0.05). Df/df mice showed ovarian tissue with less macrophage infiltration than N/df mice (p < 0.05) and GH treatment increased macrophage infiltration (p < 0.05). In contrast, bGH mice had ovarian tissue with more macrophage infiltration compared to normal mice (p < 0.05). The current study shows that GH increases DNA DSBs in oocytes and granulosa cells and raises macrophage infiltration in the ovaries, pointing to the role of the GH/IGF-I axis in maintenance of oocyte DNA integrity and ovarian macrophage infiltration in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sornson MW, et al. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature. 1996;384(6607):327–33.

    Article  CAS  PubMed  Google Scholar 

  2. Brown-Borg HM, et al. Dwarf mice and the ageing process. Nature. 1996;384(6604):33.

    Article  CAS  PubMed  Google Scholar 

  3. Blackburn A, et al. Interactions of insulin-like growth factor (IGF)-II and growth hormone in vivo: circulating levels of IGF-I and IGF-binding proteins in transgenic mice. Eur J Endocrinol. 1997;137(6):701–8.

    Article  CAS  PubMed  Google Scholar 

  4. Wolf E, et al. Effects of long-term elevated serum levels of growth hormone on life expectancy of mice: lessons from transgenic animal models. Mech Ageing Dev. 1993;68(1–3):71–87.

    Article  CAS  PubMed  Google Scholar 

  5. Faddy MJ, et al. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod. 1992;7(10):1342–6.

    Article  CAS  PubMed  Google Scholar 

  6. McGowan SE, McCoy DM. Platelet-derived growth factor-A regulates lung fibroblast S-phase entry through p27(kip1) and FoxO3a. Respir Res. 2013;14:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Woods L, et al. Decidualisation and placentation defects are a major cause of age-related reproductive decline. Nat Commun. 2017;8(1):352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ashaat N, Husseiny A. Correlation between missed abortion and insertional translocation involving chromosomes 1 and 7. Iran J Reprod Med. 2012;10(1):15–22.

    PubMed  PubMed Central  Google Scholar 

  9. Abel EL, Kruger M, Burd L. Effects of maternal and paternal age on Caucasian and Native American preterm births and birth weights. Am J Perinatol. 2002;19(1):49–54.

    Article  PubMed  Google Scholar 

  10. Bachelot A, et al. Growth hormone is required for ovarian follicular growth. Endocrinology. 2002;143(10):4104–12.

    Article  CAS  PubMed  Google Scholar 

  11. Schneider A, et al. Primordial follicle activation in the ovary of Ames dwarf mice. J Ovarian Res. 2014;7:120.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saccon TD, et al. Ovarian aging and the activation of the primordial follicle reserve in the long-lived Ames dwarf and the short-lived bGH transgenic mice. Mol Cell Endocrinol. 2017;455:23–32.

    Article  CAS  PubMed  Google Scholar 

  13. Saccon TD et al. Ovarian aging and the activation of the primordial follicle reserve in the long-lived Ames dwarf and the short-lived bGH transgenic mice. Mol Cell Endocrinol. 2016.

  14. Cecim M, Kerr J, Bartke A. Effects of bovine growth hormone (bGH) transgene expression or bGH treatment on reproductive functions in female mice. Biol Reprod. 1995;52(5):1144–8.

    Article  CAS  PubMed  Google Scholar 

  15. Saini N, Gordenin DA. Somatic mutation load and spectra: a record of DNA damage and repair in healthy human cells. Environ Mol Mutagen. 2018;59(8):672–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chiang T, Schultz RM, Lampson MA. Meiotic origins of maternal age-related aneuploidy. Biol Reprod. 2012;86(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  17. Titus S, et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5(172):172ra21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Adriaens I, Smitz J, Jacquet P. The current knowledge on radiosensitivity of ovarian follicle development stages. Hum Reprod Update. 2009;15(3):359–77.

    Article  CAS  PubMed  Google Scholar 

  19. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421(6922):499–506.

    Article  CAS  PubMed  Google Scholar 

  20. Collins JK, Jones KT. DNA damage responses in mammalian oocytes. Reproduction. 2016;152(1):R15-22.

    Article  CAS  PubMed  Google Scholar 

  21. Bektas A, et al. Aging, inflammation and the environment. Exp Gerontol. 2018;105:10–8.

    Article  CAS  PubMed  Google Scholar 

  22. Uri-Belapolsky S, et al. Interleukin-1 deficiency prolongs ovarian lifespan in mice. Proc Natl Acad Sci U S A. 2014;111(34):12492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schneider A, et al. Ovarian transcriptome associated with reproductive senescence in the long-living Ames dwarf mice. Mol Cell Endocrinol. 2017;439:328–36.

    Article  CAS  PubMed  Google Scholar 

  24. Berryman DE, et al. Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Horm IGF Res. 2004;14(4):309–18.

    Article  CAS  PubMed  Google Scholar 

  25. Masternak MM and Bartke A. Growth hormone, inflammation and aging. Pathobiol Aging Age Relat Dis. 2012;2.

  26. Turner EC, et al. Conditional ablation of macrophages disrupts ovarian vasculature. Reproduction. 2011;141(6):821–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Durackova Z. Some current insights into oxidative stress. Physiol Res. 2010;59(4):459–69.

    Article  CAS  PubMed  Google Scholar 

  28. Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov. 2009;3(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  29. Hirshfield AN. Development of follicles in the mammalian ovary. Int Rev Cytol. 1991;124:43–101.

    Article  CAS  PubMed  Google Scholar 

  30. Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev. 2009;30(5):438–64.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H, et al. Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice. Curr Biol. 2014;24(21):2501–8.

    Article  CAS  PubMed  Google Scholar 

  32. Munakata Y, et al. Follicular factors determining granulosa cell number and developmental competence of porcine oocytes. J Assist Reprod Genet. 2018;35(10):1809–19.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Louis A, Bartke A, Masternak MM. Effects of growth hormone and thyroxine replacement therapy on insulin signaling in Ames dwarf mice. J Gerontol A Biol Sci Med Sci. 2010;65(4):344–52.

    Article  PubMed  CAS  Google Scholar 

  35. Skaznik-Wikiel ME, et al. High-fat diet causes subfertility and compromised ovarian function independent of obesity in mice. Biol Reprod. 2016;94(5):108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol. 2007;19(2):238–45.

    Article  CAS  PubMed  Google Scholar 

  39. Podlutsky A, et al. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer. Geroscience. 2017;39(2):147–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang D, et al. Increased DNA damage and repair deficiency in granulosa cells are associated with ovarian aging in rhesus monkey. J Assist Reprod Genet. 2015;32(7):1069–78.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fukumatsu Y, et al. Effect of macrophages on proliferation of granulosa cells in the ovary in rats. J Reprod Fertil. 1992;96(1):241–9.

    Article  CAS  PubMed  Google Scholar 

  42. Nakayama M, et al. Changes in the expression of tumor necrosis factor (TNF) alpha, TNFalpha receptor (TNFR) 2, and TNFR-associated factor 2 in granulosa cells during atresia in pig ovaries. Biol Reprod. 2003;68(2):530–5.

    Article  CAS  PubMed  Google Scholar 

  43. Chen YF, et al. Synergistic effect of HIF-1alpha and FoxO3a trigger cardiomyocyte apoptosis under hyperglycemic ischemia condition. J Cell Physiol. 2018;233(4):3660–71.

    Article  CAS  PubMed  Google Scholar 

  44. McClelland Descalzo DL, et al. Glucose-induced oxidative stress reduces proliferation in embryonic stem cells via FOXO3A/beta-catenin-dependent transcription of p21(cip1). Stem Cell Reports. 2016;7(1):55–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumar P, Menon R. New insights into growth hormone’s actions on the macrophage: implications for non-growth-related actions of growth hormone. OA Biochemistry. 2013;1(2):15.

    Article  Google Scholar 

  46. Schneider A, et al. Growth hormone-mediated reprogramming of macrophage transcriptome and effector functions. Sci Rep. 2019;9(1):19348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Coschigano KT, et al. Identification of differentially expressed genes in the kidneys of growth hormone transgenic mice. Growth Horm IGF Res. 2010;20(5):345–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ding J, Berryman DE, Kopchick JJ. Plasma proteomic profiles of bovine growth hormone transgenic mice as they age. Transgenic Res. 2011;20(6):1305–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kevenaar ME, et al. Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool in mice. Endocrinology. 2006;147(7):3228–34.

    Article  CAS  PubMed  Google Scholar 

  50. Selesniemi K, Lee HJ, Tilly JL. Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell. 2008;7(5):622–9.

    Article  CAS  PubMed  Google Scholar 

  51. Sluczanowska-Glabowska S, et al. Morphology of ovaries in laron dwarf mice, with low circulating plasma levels of insulin-like growth factor-1 (IGF-1), and in bovine GH-transgenic mice, with high circulating plasma levels of IGF-1. J Ovarian Res. 2012;5:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eppig JJ, et al. Oocyte control of granulosa cell development: how and why. Hum Reprod. 1997;12(11 Suppl):127–32.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by CAPES, CNPq, FAPERGS, and NIH/NIA grants R15 AG059190, R03 AG059846, and R56 AG061414 (MMM).

Author information

Authors and Affiliations

Authors

Contributions

TDS performed sample analysis, interpreted data, and wrote the manuscript; MTR, DNG, JP, and LAXC performed sample analysis and data interpretation; RGM, CCB, AB, JBM, MMM, and AS designed the experiments, provided reagents and equipment, and data interpretation; YF and SM performed animal experiments and sample collection. All authors revised and edited the final manuscript draft.

Corresponding author

Correspondence to Augusto Schneider.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 72 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saccon, T.D., Rovani, M.T., Garcia, D.N. et al. Growth hormone increases DNA damage in ovarian follicles and macrophage infiltration in the ovaries. GeroScience 44, 1071–1081 (2022). https://doi.org/10.1007/s11357-021-00380-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00380-8

Keywords

Navigation