Skip to main content

Advertisement

Log in

Analysis of DNA modifications in aging research

  • Review Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

As geroscience research extends into the role of epigenetics in aging and age-related disease, researchers are being confronted with unfamiliar molecular techniques and data analysis methods that can be difficult to integrate into their work. In this review, we focus on the analysis of DNA modifications, namely cytosine methylation and hydroxymethylation, through next-generation sequencing methods. While older techniques for modification analysis performed relative quantitation across regions of the genome or examined average genome levels, these analyses lack the desired specificity, rigor, and genomic coverage to firmly establish the nature of genomic methylation patterns and their response to aging. With recent methodological advances, such as whole genome bisulfite sequencing (WGBS), bisulfite oligonucleotide capture sequencing (BOCS), and bisulfite amplicon sequencing (BSAS), cytosine modifications can now be readily analyzed with base-specific, absolute quantitation at both cytosine-guanine dinucleotide (CG) and non-CG sites throughout the genome or within specific regions of interest by next-generation sequencing. Additional advances, such as oxidative bisulfite conversion to differentiate methylation from hydroxymethylation and analysis of limited input/single-cells, have great promise for continuing to expand epigenomic capabilities. This review provides a background on DNA modifications, the current state-of-the-art for sequencing methods, bioinformatics tools for converting these large data sets into biological insights, and perspectives on future directions for the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Adey A, Shendure J (2012) Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res 22:1139–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akalin A et al (2012a) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13:R87

    Article  PubMed  PubMed Central  Google Scholar 

  • Akalin A et al (2012b) Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet 8:e1002781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500

    Article  CAS  PubMed  Google Scholar 

  • Allum F et al (2015) Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants. Nat Commun 6:7211

    Article  PubMed  PubMed Central  Google Scholar 

  • Almeida RD et al (2012) Semi-quantitative immunohistochemical detection of 5-hydroxymethyl-cytosine reveals conservation of its tissue distribution between amphibians and mammals. Epigenetics 7:137–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angermueller C et al (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13:229–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baubec T, Akalin A (2016) Genome-wide analysis of DNA methylation patterns by high-throughput sequencing. In: Aransay AM, Lavín Trueba JL (eds) Field guidelines for genetic experimental designs in high-throughput sequencing. Springer International Publishing, Cham, pp 197–221

    Chapter  Google Scholar 

  • Benayoun BA et al (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16:593–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein DL et al (2015) The BisPCR(2) method for targeted bisulfite sequencing. Epigenetics Chromatin 8:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bestor TH et al (2015) Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci U S A 112:6796–6799

    Article  CAS  PubMed  Google Scholar 

  • Bhat S et al (2016) DNA methylation detection at single base resolution using targeted next generation bisulfite sequencing and cross validation using capillary sequencing. Gene 594:259–267

    Article  CAS  PubMed  Google Scholar 

  • Bibikova M et al (2009) Genome-wide DNA methylation profiling using Infinium(R) assay. Epigenomics 1:177–200

    Article  CAS  PubMed  Google Scholar 

  • Bibikova M et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98:288–295

    Article  CAS  PubMed  Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Blueprint_consortium (2016) Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol 34:726–737

    Article  CAS  Google Scholar 

  • Bock C (2012) Analysing and interpreting DNA methylation data. Nat Rev Genet 13:705–719

    Article  CAS  PubMed  Google Scholar 

  • Booth MJ et al (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336:934–937

    Article  CAS  PubMed  Google Scholar 

  • Booth MJ et al (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 8:1841–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth MJ et al (2014) Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat Chem 6:435–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess DJ (2017) Epigenetics: rich pore methods for DNA methylation detection. Nat Rev Genet 18:209

    Article  CAS  PubMed  Google Scholar 

  • Cedar H et al (1979) Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI. Nucleic Acids Res 6:2125–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman CG et al (2015) TET-catalyzed 5-hydroxymethylcytosine regulates gene expression in differentiating colonocytes and colon cancer. Sci Rep 5:17568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PY et al (2010) BS Seeker: precise mapping for bisulfite sequencing. BMC Bioinformatics 11:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen BH et al (2016) DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY) 8:1844–1865

    Article  Google Scholar 

  • Chen GG et al (2017) Medium throughput bisulfite sequencing for accurate detection of 5-methylcytosine and 5-hydroxymethylcytosine. BMC Genomics 18:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christensen BC et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5:e1000602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark SJ et al (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark SJ et al (2016) Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol 17:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark SJ et al (2017) Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc 12:534–547

    Article  CAS  PubMed  Google Scholar 

  • Cokus SJ et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole JJ et al (2017) Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol 18:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Crary-Dooley FK et al (2017) A comparison of existing global DNA methylation assays to low-coverage whole-genome bisulfite sequencing for epidemiological studies. Epigenetics 12:206–214

    Article  PubMed  PubMed Central  Google Scholar 

  • de Koning AP et al (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dozmorov MG (2017) Epigenomic annotation-based interpretation of genomic data: from enrichment analysis to machine learning. Bioinformatics 33:3323–3330

    Article  PubMed  Google Scholar 

  • Dupont JM et al (2004) De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 333:119–127

    Article  CAS  PubMed  Google Scholar 

  • Edgar R et al (2014) Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression. Epigenetics Chromatin 7:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Franzen J et al (2017) Senescence-associated DNA methylation is stochastically acquired in subpopulations of mesenchymal stem cells. Aging Cell 16:183–191

    Article  CAS  PubMed  Google Scholar 

  • Frommer M et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuke C et al (2004) Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet 68:196–204

    Article  CAS  PubMed  Google Scholar 

  • Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13:840–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett-Bakelman FE et al. (2015) Enhanced reduced representation bisulfite sequencing for assessment of DNA methylation at base pair resolution. J Vis Exp:e52246

  • Globisch D et al (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5:e15367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravina S et al (2015) Single-cell, locus-specific bisulfite sequencing (SLBS) for direct detection of epimutations in DNA methylation patterns. Nucleic Acids Res 43:e93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gravina S et al (2016) Single-cell genome-wide bisulfite sequencing uncovers extensive heterogeneity in the mouse liver methylome. Genome Biol 17:150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu H et al (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6:468–481

    Article  CAS  PubMed  Google Scholar 

  • Hadad N et al (2016) Absence of genomic hypomethylation or regulation of cytosine-modifying enzymes with aging in male and female mice. Epigenetics Chromatin 9:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hadad N et al (2017a) Caloric-restriction attenuates age-associated alterations in CG and non-CG methylation in the old brain. BioRxv. https://doi.org/10.1101/175810

  • Hadad N et al. (2017b) Caloric restriction mitigates age-associated hippocampal differential CG and non-CG methylation. bioRxiv

  • Hadad N et al (2017c) Caloric-restriction attenuates age-associated alterations in CG and non-CG methylation in the old brain. BioRxv: https://doi.org/10.1101/175810

  • Hahn O et al (2017) Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol 18:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannum G et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367

    Article  CAS  PubMed  Google Scholar 

  • Hansen KD et al (2012) BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol 13:R83

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris RA et al (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28:1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Ecker JR (2015) Non-CG methylation in the human genome. Annu Rev Genomics Hum Genet 16:55–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He YF et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hing B et al (2015) Adaptation of the targeted capture methyl-Seq platform for the mouse genome identifies novel tissue-specific DNA methylation patterns of genes involved in neurodevelopment. Epigenetics 10:581–596

    Article  PubMed  PubMed Central  Google Scholar 

  • Holliday R (2006) Epigenetics: a historical overview. Epigenetics 1:76–80

    Article  PubMed  Google Scholar 

  • Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115

    Article  PubMed  PubMed Central  Google Scholar 

  • Hotchkiss RD (1948) The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 175:315–332

    CAS  PubMed  Google Scholar 

  • Houseman EA et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu L et al (2013) Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. Cell 155:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Ito S et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov M et al (2013) In-solution hybrid capture of bisulfite-converted DNA for targeted bisulfite sequencing of 174 ADME genes. Nucleic Acids Res 41:e72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M et al. (2017) Nanopore sequencing and assembly of a human genome with ultra-long reads. bioRxiv

  • Jeck WR et al (2012) Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell 11:727–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MJ et al. (2015) DNA methylation and healthy human aging. Aging Cell

  • Jorgensen HF et al (2006) Engineering a high-affinity methyl-CpG-binding protein. Nucleic Acids Res 34:e96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalani A et al (2014) Nutri-epigenetics ameliorates blood-brain barrier damage and neurodegeneration in hyperhomocysteinemia: role of folic acid. J Mol Neurosci 52:202–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlin S, Mrázek J (1997) Compositional differences within and between eukaryotic genomes. Proc Natl Acad Sci 94:10227–10232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushal A et al (2017) Comparison of different cell type correction methods for genome-scale epigenetics studies. BMC Bioinformatics 18:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy BK et al (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna A et al (2013) EpiGnome[trade] methyl-Seq kit: a novel post-bisulfite conversion library prep method for methylation analysis. Nat Methods 10

  • Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334

    Article  CAS  PubMed  Google Scholar 

  • Kim S et al (2017) The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age. Geroscience 39:83–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinde B et al (2015) Reading the unique DNA methylation landscape of the brain: non-CpG methylation, hydroxymethylation, and MeCP2. Proc Natl Acad Sci U S A 112:6800–6806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King GD et al (2012) Promoter methylation and age-related downregulation of Klotho in rhesus monkey. Age (Dordr) 34:1405–1419

    Article  CAS  Google Scholar 

  • Kishore K et al (2015) methylPipe and compEpiTools: a suite of R packages for the integrative analysis of epigenomics data. BMC Bioinformatics 16:313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klus P et al (2012) BarraCUDA—a fast short read sequence aligner using graphics processing units. BMC Res Notes 5:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komori HK et al (2011) Application of microdroplet PCR for large-scale targeted bisulfite sequencing. Genome Res 21:1738–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koster J, Rahmann S (2014) Massively parallel read mapping on GPUs with the q-group index and PEANUT. PeerJ 2:e606

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozlenkov A et al (2017) DNA methylation profiling of human prefrontal cortex neurons in heroin users shows significant difference between genomic contexts of hyper- and hypomethylation and a younger epigenetic age. Genes (Basel) 8

  • Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for bisulfite-Seq applications. Bioinformatics 27:1571–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger F et al (2012) DNA methylome analysis using short bisulfite sequencing data. Nat Methods 9:145–151

    Article  CAS  PubMed  Google Scholar 

  • Kungulovski G et al (2015) Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 8:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11:191–203

    Article  CAS  PubMed  Google Scholar 

  • Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Li Q et al (2015) Post-conversion targeted capture of modified cytosines in mammalian and plant genomes. Nucleic Acids Res 43:e81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lister R, Ecker JR (2009) Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res 19:959–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, Mukamel EA (2015) Turning over DNA methylation in the mind. Front Neurosci 9:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Lister R et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Logue MW et al. (2017) The correlation of methylation levels measured using Illumina 450K and EPIC BeadChips in blood samples. Epigenomics

  • Lopez-Leon M, Goya RG (2017) The emerging view of aging as a reversible epigenetic process. Gerontology 63:426–431

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Otin C et al (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou S et al (2014) Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol 15:408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu X et al (2013) Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 135:9315–9317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo C et al (2017) Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357:600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeder ML et al (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31:1137–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maegawa S et al (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20:332–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286:35334–35338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamanova L et al (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7:111–118

    Article  CAS  PubMed  Google Scholar 

  • Manconi A et al (2014) GPU-BSM: a GPU-based tool to map bisulfite-treated reads. PLoS One 9:e97277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mangold CA et al (2017a) CNS-wide sexually dimorphic induction of the major histocompatibility complex 1 pathway with aging. J Gerontol A Biol Sci Med Sci 72:16–29

    Article  PubMed  Google Scholar 

  • Mangold CA et al (2017b) Sexually divergent induction of microglial-associated neuroinflammation with hippocampal aging. J Neuroinflammation 14:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Marioni RE et al (2015) DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 16:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marioni RE et al. (2016) The epigenetic clock and telomere length are independently associated with chronological age and mortality. Int J Epidemiol

  • Martinowich K et al (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890–893

    Article  CAS  PubMed  Google Scholar 

  • Masser DR et al (2013) Focused, high accuracy 5-methylcytosine quantitation with base resolution by benchtop next-generation sequencing. Epigenetics Chromatin 6:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masser DR et al. (2015) Targeted DNA methylation analysis by next-generation sequencing. J Vis Exp

  • Masser DR et al (2016) Bisulfite oligonucleotide-capture sequencing for targeted base- and strand-specific absolute 5-methylcytosine quantitation. Age (Dordr) 38:49

    Article  CAS  Google Scholar 

  • Masser DR et al. (2017a) Sexually divergent DNA methylation patterns with hippocampal aging. Aging Cell

  • Masser DR et al. (2017b) Sexually divergent DNA methylation programs with hippocampal aging. bioRxiv 161752

  • Masser DR et al. (2017c) Sexually divergent DNA methylation patterns with hippocampal aging. Aging Cell:Preprint from BioRxv. doi: https://doi.org/10.1101/161752

  • Mei Y et al (2015) Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline. Aging Cell 14:659–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meissner A et al (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura F et al (2012) Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res 40:e136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo A et al (2015) Epigenomic signatures of neuronal diversity in the mammalian brain. Neuron 86:1369–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo A et al (2016) Epigenomic landscapes of retinal rods and cones. elife 5:e11613

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore LD et al (2013) DNA methylation and its basic function. Neuropsychopharmacology 38:23–38

    Article  CAS  PubMed  Google Scholar 

  • Moran S et al (2016) Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8:389–399

    Article  CAS  PubMed  Google Scholar 

  • Mulqueen RM et al. (2017) Scalable and efficient single-cell DNA methylation sequencing by combinatorial indexing. bioRxiv

  • Neri F et al (2016) Methylation-assisted bisulfite sequencing to simultaneously map 5fC and 5caC on a genome-wide scale for DNA demethylation analysis. Nat Protoc 11:1191–1205

    Article  CAS  PubMed  Google Scholar 

  • Nestor CE et al (2012) Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res 22:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noer A et al (2007) Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol 8:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okano M et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Olova N et al. (2017) Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. bioRxiv

  • Pacheco SE et al (2011) Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm. PLoS One 6:e20280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y, Wu H (2016) Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics 32:1446–1453

    Article  CAS  PubMed  Google Scholar 

  • Parrish RR et al. (2012) Direct bisulfite sequencing for examination of DNA methylation with gene and nucleotide resolution from brain tissues. Curr Protoc Neurosci Chapter 7:Unit 7 24

  • Petkovich DA et al (2017) Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab 25:954–960 e956

    Article  CAS  PubMed  Google Scholar 

  • Raiber E-A et al (2017) Mapping and elucidating the function of modified bases in DNA. Nat Rev Chem 1:0069

    Article  Google Scholar 

  • Rakyan VK et al (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20:434–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rand AC et al (2017) Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods 14:411–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauch T, Pfeifer GP (2005) Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab Investig 85:1172–1180

    Article  CAS  PubMed  Google Scholar 

  • Reddy PM, Reddy PR (1990) Effect of prolactin on DNA methylation in the liver and kidney of rat. Mol Cell Biochem 95:43–47

    Article  CAS  PubMed  Google Scholar 

  • Reed K et al (2010) Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal Biochem 397:96–106

    Article  CAS  PubMed  Google Scholar 

  • Reilly JG et al (1982) DNA methylation in mouse cells in culture as measured by restriction enzymes. Biochim Biophys Acta 697:53–59

    Article  CAS  PubMed  Google Scholar 

  • Schatz MC (2017) Nanopore sequencing meets epigenetics. Nat Methods 14:347–348

    Article  CAS  PubMed  Google Scholar 

  • Schubeler D (2015) Function and information content of DNA methylation. Nature 517:321–326

    Article  CAS  PubMed  Google Scholar 

  • Schultz MD et al (2015) Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen P et al (2016) Epigenetic mechanisms of longevity and aging. Cell 166:822–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serre D et al (2010) MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38:391–399

    Article  CAS  PubMed  Google Scholar 

  • Shafi A et al. (2017) A survey of the approaches for identifying differential methylation using bisulfite sequencing data. Brief Bioinform

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Shendure J et al (2017) DNA sequencing at 40: past, present and future. Nature 550:345–353

    Article  CAS  PubMed  Google Scholar 

  • Shi DQ et al (2017) New insights into 5hmC DNA modification: generation, distribution and function. Front Genet 8:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpkin AJ et al (2017) Are objective measures of physical capability related to accelerated epigenetic age? Findings from a British birth cohort. BMJ Open 7:e016708

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson JT et al (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14:407–410

    Article  CAS  PubMed  Google Scholar 

  • Song L et al (2005) Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem 77:504–510

    Article  CAS  PubMed  Google Scholar 

  • Spruijt CG et al (2013) Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152:1146–1159

    Article  CAS  PubMed  Google Scholar 

  • Stricker SH et al (2017) From profiles to function in epigenomics. Nat Rev Genet 18:51–66

    Article  CAS  PubMed  Google Scholar 

  • Stubbs TM et al (2017) Multi-tissue DNA methylation age predictor in mouse. Genome Biol 18:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Z et al (2015) Base resolution methylome profiling: considerations in platform selection, data preprocessing and analysis. Epigenomics 7:813–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szulwach KE et al (2011) 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 14:1607–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan L et al (2013) Genome-wide comparison of DNA hydroxymethylation in mouse embryonic stem cells and neural progenitor cells by a new comparative hMeDIP-seq method. Nucleic Acids Res 41:e84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teschendorff AE, Relton CL (2017) Statistical and integrative system-level analysis of DNA methylation data. Nat Rev Genet

  • Thakore PI et al (2016) Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13:127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tippmann S (2015) Programming tools: adventures with R. Nature 517:109–110

    Article  CAS  PubMed  Google Scholar 

  • Unnikrishnan A et al. (2017a) Revisiting the genomic hypomethylation hypothesis of aging. Annals of the New York Acedemy of Science In press

  • Unnikrishnan A et al (2017b) Role of DNA methylation in the dietary restriction mediated cellular memory. Geroscience 39:331–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdes AM et al (2013) Omics technologies and the study of human ageing. Nat Rev Genet 14:601–607

    Article  PubMed  CAS  Google Scholar 

  • Vanyushin BF et al (1973) The 5-methylcytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents. Gerontologia 19:138–152

    Article  CAS  PubMed  Google Scholar 

  • Varley KE, Mitra RD (2010) Bisulfite patch PCR enables multiplexed sequencing of promoter methylation across cancer samples. Genome Res 20:1279–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt P, Reinberg D (2013) Epigenome editing. Nat Biotechnol 31:1097–1099

    Article  CAS  PubMed  Google Scholar 

  • Vojta A et al (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44:5615–5628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (1940) Organisers & genes. The University Press, Cambridge

    Google Scholar 

  • Wang J et al (2011) High resolution profiling of human exon methylation by liquid hybridization capture-based bisulfite sequencing. BMC Genomics 12:597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T et al (2017) Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol 18:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber M et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  CAS  PubMed  Google Scholar 

  • Weidner CI et al (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15:R24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willyard C (2017) The epigenome editors: how tools such as CRISPR offer new details about epigenetics. Nat Med 23:900–903

    Article  PubMed  CAS  Google Scholar 

  • Wilson VL, Jones PA (1983) DNA methylation decreases in aging but not in immortal cells. Science 220:1055–1057

    Article  CAS  PubMed  Google Scholar 

  • Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10:232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Y et al (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42:451–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang AS et al (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao B et al (2017) DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nat Commun 8:1122

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu M et al (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B et al. (2017) Genome-wide, single-cell DNA methylomics reveals increased non-CpG methylation during human oocyte maturation. Stem Cell Rep

  • Zampieri M et al (2015) Reconfiguration of DNA methylation in aging. Mech Ageing Dev 151:60–70

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2009) DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. Methods Mol Biol 507:177–187

    Article  CAS  PubMed  Google Scholar 

  • Zhao L et al (2014) The dynamics of DNA methylation fidelity during mouse embryonic stem cell self-renewal and differentiation. Genome Res 24:1296–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng SC et al (2017) Correcting for cell-type heterogeneity in epigenome-wide association studies: revisiting previous analyses. Nat Methods 14:216–217

    Article  CAS  PubMed  Google Scholar 

  • Ziller MJ et al (2015) Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nat Methods 12:230–232 231 p following 232

    Article  CAS  PubMed  Google Scholar 

  • Ziller MJ et al (2016) Targeted bisulfite sequencing of the dynamic DNA methylome. Epigenetics Chromatin 9:55

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou J et al (2014) Epigenome-wide association studies without the need for cell-type composition. Nat Methods 11:309–311

    Article  CAS  PubMed  Google Scholar 

  • Zykovich A et al (2014) Genome-wide DNA methylation changes with age in disease-free human skeletal muscle. Aging Cell 13:360–366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Donald Dunn for assistance with figure generation.

Funding

This work was supported the Donald W. Reynolds Foundation, the Oklahoma Nathan Shock Center of Excellence in the Biology of Aging Targeted DNA Methylation and Mitochondrial Heteroplasmy Core (P30AG050911), the National Institute on Aging (R01AG026607, F31AG038285, T32AG052363, K99AG051661), the National Eye Institute (R01EY021716, R21EY024520, T32EY023202), and the Oklahoma Center for Advancement of Science and Technology (HR14-174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willard M. Freeman.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masser, D.R., Hadad, N., Porter, H. et al. Analysis of DNA modifications in aging research. GeroScience 40, 11–29 (2018). https://doi.org/10.1007/s11357-018-0005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-018-0005-3

Keywords

Navigation