Skip to main content
Log in

Future prediction of water balance using the SWAT and CA-Markov model using INMCM5 climate projections: a case study of the Silwani watershed (Jharkhand), India

  • Resilient and Sustainable Water Management in Agriculture
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this research was to simulate the future water balance of the Silwani watershed, Jharkhand, India, under the combined effect of land use and climate change based on the Soil and Water Assessment Tool (SWAT) and Cellular Automata (CA)-Markov Chain model. The future climate prediction was done based on daily bias-corrected datasets of the INMCM5 climate model with Shared Socioeconomic Pathway 585 (SSP585), which represent the fossil fuel development of the world. After a successful model run, water balance components like surface runoff, groundwater contribution to stream flow, and ET were simulated. The anticipated change in land use/land cover (LULC) between 2020 and 2030 reflects a slight increase (3.9 mm) in groundwater contribution to stream flow while slight decrease in surface runoff (4.8 mm). The result of this research work helps the planners to plan any similar watershed for future conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets used and/or analyzed throughout the current study are available from the corresponding author on reasonable request.

References

  • Abdelkarim A, Alogayell HM, Alkadi II, Youssef I (2022) Spatial–temporal prediction model for land cover of the rural–urban continuum axis between Ar-Riyadh and Al-Kharj cities in KSA in the year of 2030 using the integration of CA–Markov model, GIS-MCA, and AHP. Appl Geomat 14(3):501–525

    Article  Google Scholar 

  • Ahmed HA, Singh SK, Kumar M, Maina MS, Dzwairo R, Lal D (2020) Impact of urbanization and land cover change on urban climate: Case study of Nigeria. Urban Clim 32:100600

    Article  Google Scholar 

  • Ahmed N, Wang G, Booij MJ, Xiangyang S, Hussain F, Nabi G (2022) Separation of the impact of landuse/landcover change and climate change on runoff in the upstream area of the Yangtze River, China. Water Resour Manag 36(1):181–201

    Article  Google Scholar 

  • Aksoy H, Kaptan S (2022) Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model. Geocarto Int 37(4):1183–1202

    Article  Google Scholar 

  • Anderson JR, Hardy EE, Roach JT, Witmer RE (1976) A land use and land cover classification system for use with remote sensor data: US Government Printing Office. Geol Surv Prof Pap 964. https://doi.org/10.3133/pp964

  • Arsanjani JJ, Helbich M, Kainz W, Boloorani AD (2013) Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int J Appl Earth Obs Geoinf 21:265–275

  • Balu A, Ramasamy S, Sankar G (2023) Assessment of climate change impact on hydrological components of Ponnaiyar river basin, Tamil Nadu using CMIP6 models. J Water Clim Chang 14(3):730–747. https://doi.org/10.2166/wcc.2023.354

  • Batty M (2005) Cities and complexity: understanding cities with cellular automata, agentbased models, and fractals. MIT Press, Cambridge, MA

    Google Scholar 

  • Bhatt D, Mall RK, Raju KP, Suryavanshi S (2022) Multivariate drought analysis for the temperature homogeneous regions of India: lessons from the Gomati River basin. Meteorol Appl 29(2):e2044

    Article  Google Scholar 

  • Boru GF, Gonfa ZB, Diga GM (2019) Impacts of climate change on stream flow and water availability in Anger sub-basin, Nile Basin of Ethiopia. Sustain Water Resour Manag 5(4):1755–1764

    Article  Google Scholar 

  • Brath A, Montanari A, Moretti G (2006) Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty). J Hydrol 324(1–4):141–153

    Article  Google Scholar 

  • Changnon SA, Demissie M (1996) Detection of changes in streamflow and floods resulting from climate fluctuations and land use-drainage changes. Clim Chang 32(4):411–421. https://doi.org/10.1007/BF00140354

  • Chaube UC, Suryavanshi S, Nurzaman L, Pandey A (2011) Synthesis of flow series of tributaries in Upper Betwa basin. Int J Environ Sci 1(7):1459–1475

    Google Scholar 

  • Chaudhuri G, Clarke K (2013) The SLEUTH land use change model: a review. Environ Resour Res 1(1):88–105

    Google Scholar 

  • Chawla I, Mujumdar PP (2015) Isolating the impacts of land use and climate change on streamflow. Hydrol Earth Syst Sci 19(8):3633–3651

  • Chen Y, Marek GW, Marek TH, Xue Q, Brauer DK, Srinivasan R (2019) Assessing Soil and Water Assessment Tool plant stress algorithms using full and deficit irrigation treatments. Agron J 111(3):1266–1280

    Article  Google Scholar 

  • Costa MH, Botta A, Cardille JA (2003) Effects of large-scale changes in land cover on the discharge of the Tocantins River, South-Eastern Amazonia. J Hydrol 283:206–217

    Article  Google Scholar 

  • Crooks S, Davies H (2001) Assessment of land use change in the Thames catchment and its effect on the flood regime of the river. Phys Chem Earth, Part B 26(7–8):583–591

    Article  Google Scholar 

  • De Roo A, Odijk M, Schmuck G, Koster E, Lucieer A (2001) Assessing the effects of land use changes on floods in the meuse and oder catchment. Phys Chem Earth Part B: Hydrology, Oceans and Atmosphere 26(7–8):593–599

  • Emlaei Z, Pourebrahim S, Heidari H, Lee KE (2022) The impact of climate change as well as land-use and land-cover changes on water yield services in Haraz Basin. Sustainability 14(13):7578

    Article  Google Scholar 

  • Galleguillos M, Gimeno F, Puelma C, Zambrano-Bigiarini M, Lara A, Rojas M (2021) Disentangling the effect of future land use strategies and climate change on stream flow in a Mediterranean catchment dominated by tree plantations. J Hydrol 595:126047

    Article  Google Scholar 

  • Gao H, Tang Q, Shi X, Zhu C, Bohn T, Su F, Pan M, Sheffield J, Lettenmaier D, Wood R (2010) Water budget record from variable infiltration capacity (VIC) model 120–173. https://eprints.lancs.ac.uk/id/eprint/89407

  • Garg V, Nikam BR, Thakur PK, Aggarwal SP, Gupta PK, Srivastav SK (2019) Human-induced land use land cover change and its impact on hydrology. HydroResearch 1:48–56

  • Gashaw T, Tulu T, Argaw M, Worqlul AW (2018) Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Sci Total Environ 619–620:1394–1408. https://doi.org/10.1016/j.scitotenv.2017.11.191

    Article  CAS  Google Scholar 

  • Ghalehteimouri KJ, Shamsoddini A, Mousavi MN, Ros FBC, Khedmatzadeh A (2022) Predicting spatial and decadal of land use and land cover change using integrated cellular automata Markov chain model based scenarios (2019–2049) Zarriné-Rūd River Basin in Iran. Environ Challenges 6:100399

    Article  Google Scholar 

  • Ghodichore N, Dhanya CT, Franssen HJH (2022) Isolating the effects of land use land cover change and inter-decadal climate variations on the water and energy cycles over India, 1981–2010. J Hydrol 612:128267

    Article  Google Scholar 

  • Gong X, Bian J, Wang Y et al (2019) Evaluating and predicting the effects of land use changes on water quality using SWAT and CA–Markov models. Water Resour Manag 33:4923–4938. https://doi.org/10.1007/s11269-019-02427-0

    Article  Google Scholar 

  • Goudarzi FM, Sarraf A, Ahmadi H (2019) The effects of climate change on crop yields using RCP scenarios with SWAT agro-hydrological model in Maharlu Basin (Fars Province-Iran). Int J Water 13(4):348–359

    Article  Google Scholar 

  • Guo T, Engel BA, Shao G, Arnold JG, Srinivasan R, Kiniry JR (2019) Development and improvement of the simulation of woody bioenergy crops in the Soil and Water Assessment Tool (SWAT). Environ Model Softw 122:104295

    Article  Google Scholar 

  • Gurjar SK, Shrivastava S, Suryavanshi S, Tare V (2022) Assessment of the natural flow regime and its variability in a tributary of Ganga River: impact of land use and land cover change. Environ Dev 44:100756. https://doi.org/10.1016/j.envdev.2022.100756

  • Hasan MA, Pradhanang SM (2017) Estimation of flow regime for a spatially varied Himalayan watershed using improved multi-site calibration of the Soil and Water Assessment Tool (SWAT) model. Environ Earth Sci 76(23):1–13

    Article  Google Scholar 

  • Heidarlou HB, Shafiei AB, Erfanian M, Tayyebi A, Alijanpour A (2019) Effects of preservation policy on land use changes in Iranian Northern Zagros forests. Land use policy 81:76–90

  • https://www.geographycasestudy.com/urban-land-use-patterns-and-models/

  • Huyen NT, Tram VNQ, Minh DN, Liem ND, Loi NK (2017) Assessing the impacts of climate change on water resources in the Srepok watershed, Central Highland of Vietnam. J Water Clim Chang 8(3):524–534

    Article  Google Scholar 

  • Hyandye C, Martz LW (2017) A markovian and cellular automata land-use change predictive model of the usangu catchment. Int J Remote Sens 38(1):64–81

  • Jalayer S, Sharifi A, Abbasi-Moghadam D, Tariq A, Qin S (2022) Modeling and predicting land use land cover spatiotemporal changes: a case study in Chalus Watershed, Iran. IEEE J Select Top Appl Earth Observ Remote Sens 15:5496–5513

    Article  Google Scholar 

  • Ji G, Lai Z, Xia H, Liu H, Wang Z (2021) Future runoff variation and flood disaster prediction of the yellow river basin based on CA-Markov and SWAT. Land 10:421. https://doi.org/10.3390/land1004042

    Article  Google Scholar 

  • Jiménez-Navarro IC, Jimeno-Sáez P, López-Ballesteros A, Pérez-Sánchez J, Senent-Aparicio J (2021) Impact of climate change on the hydrology of the forested watershed that drains to Lake Erken in Sweden: an analysis using SWAT+ and CMIP6 Scenarios. Forests 12(12):1803

    Article  Google Scholar 

  • Kamusoko C, Aniya M, Adi B, Manjoro M (2009) Rural sustainability under threat in Zimbabwe–simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Appl Geogr 29(3):435–447

  • Khanal S, Lutz AF, Kraaijenbrink PD, van den Hurk B, Yao T, Immerzeel WW (2021) Variable 21st century climate change response for rivers in High Mountain Asia at seasonal to decadal time scales. Water Resour Res 57(5):e2020WR029266

    Article  Google Scholar 

  • Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97

    Article  Google Scholar 

  • Kumar N, Singh SK, Singh VG, Dzwairo B (2018) Investigation of impacts of land use/land cover change on water availability of Tons River Basin Madhya Pradesh India. Modeling Earth Systems and Environment 4(1):295–310. https://doi.org/10.1007/s40808-018-0425-1

  • Kumar N, Singh SK, Singh VG, Dzwairo B (2018) Investigation of impacts of land use/land cover change on water availability of Tons River Basin, Madhya Pradesh, India. Model Earth Syst Environ 4(1):295–310

    Article  Google Scholar 

  • Kumar M, Kumar M, Denis DM, Verma OP, Mahato LL, Pandey K (2021) Investigating water quality of an urban water body using ground and space observations. Spat Inf Res 29:897–906

    Article  Google Scholar 

  • Kumar M, Denis DM, Kundu A, Joshi N, Suryavanshi S (2022) Understanding land use/land cover and climate change impacts on hydrological components of Usri watershed, India. Appl Water Sci 12(3):1–14

    Article  CAS  Google Scholar 

  • Kushwaha K, Singh MM, Singh SK, Patel A (2021) Urban growth modeling using earth observation datasets, cellular automata-Markov chain model and urban metrics to measure urban footprints. Remote Sens Appl: Soc Environ 22:100479

    Google Scholar 

  • Li Z, Xu Z, Shao Q, Yang J (2009) Parameter estimation and uncertainty analysis of SWAT model in upper reaches of the Heihe river basin. Hydrol Process 23(19):2744–2753

    Article  Google Scholar 

  • Li Y, Cai Y, Wang X, Li C, Liu Q, Sun L, Fu Q (2022) Classification analysis of blue and green water quantities for a large-scale watershed of southwest China. J Environ Manag 321:115894

    Article  Google Scholar 

  • Liu R, Li Z, Xin X, Liu D, Zhang J, Yang Z (2022) Water balance computation and water quality improvement evaluation for Yanghe Basin in a semiarid area of North China using coupled MIKE SHE/MIKE 11 modeling. Water Supply 22(1):1062–1074

    Article  CAS  Google Scholar 

  • Ma D, Xu YP, Xuan W, Gu H, Sun Z, Bai Z (2020) Do model parameters change under changing climate and land use in the upstream of the Lancang River Basin, China? Hydrol Sci J 65(11):1894–1908

    Article  Google Scholar 

  • Memarian H, Balasundram SK, Talib JB, Sung CTB, Sood AM, Abbaspour K (2012) Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. J Geogr Inf Syst 542–554. https://doi.org/10.4236/jgis.2012.46059

  • Mengistu TD, Chung IM, Kim MG, Chang SW, Lee JE (2022) Impacts and implications of land use land cover dynamics on groundwater recharge and surface runoff in East African Watershed. Water 14(13):2068

    Article  Google Scholar 

  • Mishra V, Bhatia U, Tiwari AD (2020) Bias-corrected climate projections for South Asia from coupled model intercomparison project-6. Sci Data 7(1):1–13

    Article  CAS  Google Scholar 

  • Munthali MG, Mustak S, Adeola A, Botai J, Singh SK, Davis N (2020) Modelling land use and land cover dynamics of Dedza district of Malawi using hybrid Cellular Automata and Markov model. Remote Sens Appl : Soc Environ 17:100276

    Google Scholar 

  • Murty PS, Pandey A, Suryavanshi S (2014) Application of semi-distributed hydrological model for basin level water balance of the Ken basin of Central India. Hydrol Process 28(13):4119–4129

    Article  Google Scholar 

  • Mwabumba M, Yadav BK, Rwiza MJ, Larbi I, Twisa S (2022) Analysis of land use and land-cover pattern to monitor dynamics of Ngorongoro world heritage site (Tanzania) using hybrid cellular automata-Markov model. Curr Res Environ Sustain 4:100126

    Article  Google Scholar 

  • Narsimlu B, Gosain AK, Chahar BR, Singh SK, Srivastava PK (2015) SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin India using sequential uncertainty fitting. Environ Prog 2(1):79–95. https://doi.org/10.1007/s40710-015-0064-8

  • Näschen K, Diekkrüger B, Evers M, Höllermann B, Steinbach S, Thonfeld F (2019) The impact of land use/land cover change (LULCC) on water resources in a tropical catchment in Tanzania under different climate change scenarios. Sustainability 11(24):7083

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources. Institute. http://twri.tamu.edu/reports/2011/tr406.pdf

  • Nyeko M (2015) Hydrologic modelling of data scarce basin with SWAT model: capabilities and limitations. Water Resour Manag 29:81–94

    Article  Google Scholar 

  • Paul M, Rajib A, Negahban-Azar M, Shirmohammadi A, Srivastava P (2021) Improved agricultural Water management in data-scarce semi-arid watersheds: value of integrating remotely sensed leaf area index in hydrological modeling. Sci Total Environ 791:148177

    Article  CAS  Google Scholar 

  • Prowse TD, Wrona FJ, Reist JD, Gibson JJ, Hobbie JE, Lévesque LM, Vincent WF (2006) Climate change effects on hydroecology of arctic freshwater ecosystems. AMBIO J Hum Environ 35(7):347–358

  • Qiu C-X, Han D, Dong Q-K, Mao Q-Q (2017) Study on spatial model of land use based on CA-Markov model after returning cropland to forest IOP: Earth Environ Sci 78(1):012013

  • Raij-Hoffman I, Miller K, Paul G, Yimam Y, Mehan S, Dickey J, Harter T, Kisekka I (2022) Modeling water and nitrogen dynamics from processing tomatoes under different management scenarios in the San Joaquin Valley of California. J Hydrol: Reg Stud 43:101195

    Google Scholar 

  • Rathjens H, Kiesel J, Miguez MB, Winchell M, Arnold JG, Sur R (2022) Simulation of pesticide and metabolite concentrations using SWAT+ landscape routing and conditional management applications. Water 14(9):1332

    Article  Google Scholar 

  • Sertel E, Imamoglu MZ, Cuceloglu G, Erturk A (2019) Impacts of land cover/use changes on hydrological processes in a rapidly urbanizing mid-latitude water supply catchment. Water 11(5):1075

    Article  Google Scholar 

  • Sharma A, Patel PL, Sharma PJ (2022) Influence of climate and land-use changes on the sensitivity of SWAT model parameters and water availability in a semi-arid river basin. CATENA 215:106298

    Article  Google Scholar 

  • Shawul AA, Alamirew T, Dinka MO (2013) Calibration and validation of SWAT model and estimation of water balance components of Shaya mountainous watershed, Southeastern Ethiopia. Hydrol Earth Syst Sci Discuss 10(11):13955–13978

    Google Scholar 

  • Singh SK, Mustak S, Srivastava PK, Szabó S, Islam T (2015) Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environ Proces 2(1):61–78

    Article  Google Scholar 

  • Singh SK, Singh P, Gautam SK (2016) Appraisal of urban lake water quality through numerical index, multivariate statistics, and earth observation data sets. Int J Environ Sci Technol 13(2):445–456

    Article  Google Scholar 

  • Singh SK, Laari PB, Mustak SK, Srivastava PK, Szabó S (2018) Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto Int 33(11):1202–1222

    Article  Google Scholar 

  • Singh SK, Srivastava PK, Szabó S, Petropoulos GP, Gupta M, Islam T (2017) Landscape transform and spatial metrics for mapping spatiotemporal land cover dynamics using Earth Observation data-sets. Geocarto international 32(2):113–127. https://doi.org/10.1080/10106049.2015.1130084

  • Singh VG, Singh SK, Kumar N, Singh RP (2022) Simulation of land use/land cover change at a basin scale using satellite data and markov chain model. Geocarto Int 37(26):11339–11364. https://doi.org/10.1080/10106049.2022.2052976

  • Sun J, Yan H, Bao Z, Wang G (2022) Investigating impacts of climate change on runoff from the Qinhuai River by using the SWAT model and CMIP6 Scenarios. Water 14(11):1778

    Article  Google Scholar 

  • Suryavanshi S, Pandey A, Chaube UC (2017) Hydrological simulation of the Betwa River basin (India) using the SWAT model. Hydrol Sci J 62(6):960–978

    Article  CAS  Google Scholar 

  • Tan ML, Ibrahim AL, Yusop Z, Duan Z, Ling L (2015) Impacts of land-use and climate variability on hydrological components in the Johor River basin, Malaysia. Hydrol Sci J 60(5):873–889

  • Tang J, Wang L, Yao Z (2006) Analyzing urban sprawl spatial fragmentation using multi-temporal satellite images. GISci Remote Sens 43:218–232

    Article  Google Scholar 

  • Tariq A, Shu H (2020) CA-Markov chain analysis of seasonal land surface temperature and land use land cover change using optical multi-temporal satellite data of Faisalabad, Pakistan. Remote Sens 12(20):3402

    Article  Google Scholar 

  • Torabi Haghighi A, Darabi H, Shahedi K, Solaimani K, Klove B (2020) A Scenario-Based Approach for Assessing the Hydrological Impacts of Land Use and Climate Change in the Marboreh Watershed, Iran. Environ Model Assess 25:41–57. https://doi.org/10.1007/s10666-019-09665-x

  • Torrens PM, O'Sullivan D (2001) Cellular automata and urban simulation: where do we go from here?. Environ Plann B Plann Des 28(2):163–168

  • Triana JSA, Chu ML, Stein JA (2021) Assessing the impacts of agricultural conservation practices on freshwater biodiversity under changing climate. Ecol Model 453:109604

    Article  Google Scholar 

  • Veldkamp A, Verburg PH (2004) Modelling land use change and environmental impact. J Environ Manag 72(1–2):1–3

    Article  CAS  Google Scholar 

  • Vigiak O, Lutz S, Mentzafou A, Chiogna G, Tuo Y, Majone B, Beck H, de Roo A, Malagó A, Bouraoui F, Kumar R (2018) Uncertainty of modelled flow regime for flow-ecological assessment in Southern Europe. Sci Total Environ 615:1028–1047

    Article  CAS  Google Scholar 

  • Wang Q, Wang H, Chang R, Zeng H, Bai X (2022) Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China. Ecol Model 464:109850

    Article  Google Scholar 

  • Wegener M (1995) Current and future land use models. In Land Use Model Conference. Dallas: Texas Transportation Institute. Retrieved from http://spiekermann-wegener.de/pub/pdf/MW_Dallas.pdf

  • White KL, Chaubey I (2005) Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model 1. JAWRA. J Am Water Resour Assoc 41(5):1077–1089

    Article  CAS  Google Scholar 

  • Xie H, Lian Y (2013) Uncertainty-based evaluation and comparison of SWAT and HSPF applications to the Illinois River Basin. J Hydrol 481:119–131

    Article  Google Scholar 

  • Yang L, Feng Q, Yin Z, Wen X, Si J, Li C, Deo RC (2017) Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, Northwest China. Hydrological Processes 31(5):1100–1112

  • Yang X, Zheng XQ, Chen R (2014) A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecol Model 283:1–7

  • Yousuf A, Bhardwaj A, Singh S, Prasad V (2022) Application of WEPP model for runoff and sediment yield simulation from ungauged watershed in Shivalik foot-hills. In: Computers in Earth and Environmental Sciences, Elsevier, pp. 327–335. https://doi.org/10.1016/B978-0-323-89861-4.00028-2

  • Zhang H, Wang B, Li Liu D, Zhang M, Leslie LM, Yu Q (2020a) Using an improved SWAT model to simulate hydrological responses to land use change: a case study of a catchment in tropical Australia. J Hydrol 585:124822

    Article  Google Scholar 

  • Zhang L, Wang C, Liang G, Cui Y, Zhang Q (2020b) Influence of land use change on hydrological cycle: application of SWAT to Su-Mi-Huai area in Beijing, China. Water 12(11):3164

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mukesh Kumar: conceptualization; methodology; validation; formal analysis; investigation; resources; data curation; writing, original draft preparation; visualization. Lakhan Lal Mahato: formal analysis; investigation; resources; data curation; writing; visualization. Shakti Suryavanshi: conceptualization; software; formal analysis; review and editing. Sudhir Kumar Singh: software; review and editing. Arnab Kundu: visualization; review and editing. Dipanwita Dutta: visualization; review and editing. Deepak Lal: review and editing. All authors have read and approved the content of the manuscript.

Corresponding author

Correspondence to Shakti Suryavanshi.

Ethics declarations

Ethical approval

The manuscript was reviewed and ethical approved for publication by all authors.

Consent to participate

The manuscript was reviewed and consents to participate by all authors.

Consent to publish

The manuscript was reviewed and consents to publish by all authors.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Marcus Schulz

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix I

Appendix I

Classification agreement/disagreement

According to ability to specify accurately quantity and allocation

Information of Quantity

Information of Allocation

No[n]

Medium[m]

Perfect[p]

Perfect[P(x)]

P(n) = 0.5555

P(m) = 0.9231

P(p) = 1.0000

PerfectStratum[K(x)]

K(n) = 0.5595

K(m) = 0.9231

K(p) = 1.0000

MediumGrid[M(x)]

M(n) = 0.4624

M(m) = 0.8349

M(p) = 0.8321

MediumStratum[H(x)]

H(n) = 0.1429

H(m) = 0.3040

H(p) = 0.2992

No[N(x)]

N(n) = 0.1429

N(m) = 0.3040

N(p) = 0.2992

Agreement Chance = 0.1429

Agreement Quantity = 0.1611

Agreement Strata = 0.0000

Agreement Grid cell = 0.5309

Disagree Gridcell = 0.0882

Disagree Strata = 0.0000

Disagree Quantity = 0.0769

Kno = 0.8074

Klocation = 0.8575

Klocation Strata = 0.8575

Kstandard = 0.7628

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Mahato, L.L., Suryavanshi, S. et al. Future prediction of water balance using the SWAT and CA-Markov model using INMCM5 climate projections: a case study of the Silwani watershed (Jharkhand), India. Environ Sci Pollut Res 31, 54311–54324 (2024). https://doi.org/10.1007/s11356-023-27547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27547-4

Keywords