Skip to main content
Log in

Enhanced selective separation of vanadium(V) and chromium(VI) using the CeO2 nanorod containing oxygen vacancies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Adsorption of vanadium from wastewater defends the environment from toxic ions and contributes to recover the valuable metal. However, it is still challenging for the separation of vanadium (V5+) and chromium (Cr6+) because of their similar properties. Herein, a kind of CeO2 nanorod containing oxygen vacancies is facilely synthesized which displays ultra-high selectivity of V5+ against various competitive ions (i.e., Fe, Mn, Cr, Ni, Cu, Zn, Ga, Cd, Ba, Pb, Mg, Be, and Co). Moreover, a large separation factor (SFV/Cr) of 114,169.14 for the selectivity of V5+ is achieved at the Cr6+/V5+ ratio of 80 with the trace amount of V5+ (~ 1 mg/L). The results show that the process of V5+ uptake is the monolayer homogeneous adsorption and is controlled by external and intraparticle diffusions. In addition, it also shows that V5+ is reduced to V3+ and V4+ and then formation of V–O complexation. This work offers a novel CeO2 nanorod material for efficient separation of V5+ and Cr6+ and also clarifies the mechanism of the V5+ adsorption on the CeO2 surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and analyzed in the current study are available from the corresponding author on reasonable request.

References

  • Amante C, De Sousa-Coelho AL, Aureliano M (2021) Vanadium and melanoma: a systematic review. Metals 11:828

    Article  CAS  Google Scholar 

  • Aregay GG, Ali J, Shahzad A, Ifthikar J, Oyekunle DT, Chen Z (2021) Application of layered double hydroxide enriched with electron rich sulfide moieties (S2O42−) for efficient and selective removal of vanadium (V) from diverse aqueous medium. Sci Total Environ 792:148543

    Article  CAS  Google Scholar 

  • Bao S, Chen B, Zhang Y, Cui Y (2020) Selective adsorption of vanadium in asymmetric capacitive deionization with resin/activated carbon composite electrodes. Chem Eng Res Des 163:107–114

    Article  CAS  Google Scholar 

  • Bello A, Leiviska T, Zhang R, Tanskanen J, Maziarz P, Matusik J, Bhatnagar A (2019) Synthesis of zerovalent iron from water treatment residue as a conjugate with kaolin and its application for vanadium removal. J Hazard Mater 374:372–381

    Article  CAS  Google Scholar 

  • Cao Y, Zhao L, Gutmann T, Xu Y, Dong L, Buntkowsky G, Gao F (2018) Getting insights into the influence of crystal plane effect of shaped ceria on its catalytic performances. J Phys Chem C 122:20402–20409

    Article  CAS  Google Scholar 

  • Chen ASC, Wang L, Sorg TJ, Lytle DA (2020) Removing arsenic and co-occurring contaminants from drinking water by full-scale ion exchange and point-of-use/point-of-entry reverse osmosis systems. Water Res 172:115455

    Article  CAS  Google Scholar 

  • Dhillon A, Kumar Sharma T, Soni SK, Kumar D (2016) Fluoride adsorption on a cubical ceria nanoadsorbent: function of surface properties. RSC Adv 6:89198–89209

    Article  CAS  Google Scholar 

  • Guo Y, Li HY, Huang J, Shen S, Wang CJ, Wu ZY, Xie B (2020) Efficient separation of V(V) and Cr(VI) in aqua by microemulsion extraction. Sep Purif Technol 238:116409

    Article  CAS  Google Scholar 

  • He C, Zhang B, Lu J, Qiu R (2021) A newly discovered function of nitrate reductase in chemoautotrophic vanadate transformation by natural mackinawite in aquifer. Water Res 189:116664

    Article  CAS  Google Scholar 

  • Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

  • Huang X, Ye Z, Chen L, Chen X, Liu C, Yin Y, Wang X, Wei Y (2020) Removal of V(V) from solution using a silica-supported primary amine resin: batch studies, experimental analysis, and mathematical modeling. Molecules 25:1448

    Article  CAS  Google Scholar 

  • Jc L, Kurniawan KE, Chung KW, Kim R, Jeon HS (2021) A review on the metallurgical recycling of vanadium from slags: towards a sustainable vanadium production. J Market Res 12:343–364

    Google Scholar 

  • Kasperiski FM, Lima EC, Reis GSd, da Costa JB, Dotto GL, Dias SLP, Cunha MR, Pavan FA, Correa CS (2018) Preparation of CTAB-functionalized aqai stalk and its efficient application as adsorbent for the removal of Direct Blue 15 and Direct Red 23 dyes from aqueous media. Chem Eng Commun 205:1520–1536

    Article  CAS  Google Scholar 

  • Kong X, Chen J, Tang Y, Lv Y, Chen T, Wang H (2020) Enhanced removal of vanadium(V) from groundwater by layered double hydroxide-supported nanoscale zerovalent iron. J Hazard Mater 392:122392

    Article  CAS  Google Scholar 

  • Li HY, Yang Y, Zhang M, Wei W, Xie B (2019) A novel anion exchange method based on in situ selectively reductive desorption of Cr(VI) for its separation from V(V): toward the comprehensive use of hazardous wastewater. J Hazard Mater 368:670–679

    Article  CAS  Google Scholar 

  • Liu F, Zhou H, Pan Z, Liu Y, Yao G, Guo Y, Lai B (2020a) Degradation of sulfamethoxazole by cobalt-nickel powder composite catalyst coupled with peroxymonosulfate: performance, degradation pathways and mechanistic consideration. J Hazard Mater 400:123322

    Article  CAS  Google Scholar 

  • Liu Y, Jiang Y, Hu Z, Peng J, Lai W, Wu D, Zuo S, Zhang J, Chen B, Dai Z, Yang Y, Huang Y, Zhang W, Zhao W, Zhang W, Wang L, Chou S (2020b) In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv Func Mater 31:2008033

    Article  Google Scholar 

  • Liu GL, Hou GY, Mao X, Qi XY, Song YB, Ma XX, Wu J, Luo GQ, Yao H, Liu QZ (2022a) Rational design of CeO2/Bi7O9I3 flower-like nanosphere with Z-scheme heterojunction and oxygen vacancy for enhancing photocatalytic activity. Chem Eng J 431:133254

    Article  CAS  Google Scholar 

  • Liu J, Huang Y, Li H, Duan H (2022b) Recent advances in removal techniques of vanadium from water: a comprehensive review. Chemosphere 287:132021

    Article  CAS  Google Scholar 

  • Liu T, Wang P, Wang ZL (2022c) A high-efficient and recyclable aged nanoscale zero-valent iron compound for V5+ removal from wastewater: characterization, performance and mechanism. Chemosphere 302:134833

    Article  CAS  Google Scholar 

  • Mironov N, Milordov D, Tazeeva E, Tazeev D, Abilova G, Yakubova S, Yakubov M (2021) Impact of asphaltenes on the adsorption behavior of petroleum vanadyl porphyrins: kinetic and thermodynamic aspects. Energy Fuels 35:14527–14541

    Article  CAS  Google Scholar 

  • Peng H, Yang L, Chen Y, Guo J (2019a) A novel technology for recovery and separation of vanadium and chromium from vanadium-chromium reducing residue. Appl Sci 10:198

    Article  Google Scholar 

  • Peng H, Shang Q, Chen R, Zhang L, Chen Y, Guo J (2020) Step-adsorption of vanadium (V) and chromium (VI) in the leaching solution with melamine. Sci Rep 10:6326

    Article  CAS  Google Scholar 

  • Peng H, Guo J, Li B, Huang H (2022a) Vanadium properties, toxicity, mineral sources and extraction methods: a review. Environ Chem Lett 20:1249–1263

    Article  CAS  Google Scholar 

  • Peng H, Guo J, Li B, Huang H, Shi W, Liu Z (2022b) Removal and recovery of vanadium from waste by chemical precipitation, adsorption, solvent extraction, remediation, photo-catalyst reduction and membrane filtration. A Rev Environ Chem Lett 20:1763–1776

    Article  CAS  Google Scholar 

  • Petranikova M, Tkaczyk AH, Bartl A, Amato A, Lapkovskis V, Tunsu C (2020) Vanadium sustainability in the context of innovative recycling and sourcing development. Waste Manage 113:521–544

    Article  CAS  Google Scholar 

  • Qu J, Liu Y, Cheng L, Jiang Z, Zhang G, Deng F, Wang L, Han W, Zhang Y (2021) Green synthesis of hydrophilic activated carbon supported sulfide nZVI for enhanced Pb(II) scavenging from water: characterization, kinetics, isotherms and mechanisms. J Hazard Mater 403:123607

    Article  CAS  Google Scholar 

  • Scibior A, Pietrzyk L, Plewa Z, Skiba A (2020) Vanadium: risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J Trace Elem Med Biol 61:126508

    Article  CAS  Google Scholar 

  • Ścibior A, Wnuk E, Gołębiowska D (2021) Wild animals in studies on vanadium bioaccumulation — potential animal models of environmental vanadium contamination: a comprehensive overview with a Polish accent. Sci Total Environ 785:147205

    Article  Google Scholar 

  • Shi J, Zhang B, Cheng Y, Peng K (2020) Microbial vanadate reduction coupled to co-metabolic phenanthrene biodegradation in groundwater. Water Res 186:116354

    Article  CAS  Google Scholar 

  • Vences Alvarez E, Chazaro Ruiz LF, Rangel Mendez JR (2022) New bimetallic adsorbent material based on cerium-iron nanoparticles highly selective and affine for arsenic(V). Chemosphere 297:134177

    Article  CAS  Google Scholar 

  • Wang J, Guo X (2020) Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 258:127279

    Article  CAS  Google Scholar 

  • Wang Z, Zhang B, He C, Shi J, Wu M, Guo J (2021) Sulfur-based mixotrophic vanadium (V) bio-reduction towards lower organic requirement and sulfate accumulation. Water Res 189:116655

    Article  CAS  Google Scholar 

  • Wang P, Hu J, Wang Y, Liu T (2022) Enhanced elimination of V5+ in wastewater using zero-valent iron activated by ball milling: the overlooked crucial roles of energy input and sodium chloride. J Hazard Mater 435:129050

    Article  CAS  Google Scholar 

  • Wei X, Li K, Zhang X, Tong Q, Ji J, Cai Y, Gao B, Zou W, Dong L (2022) CeO2 nanosheets with anion-induced oxygen vacancies for promoting photocatalytic toluene mineralization: toluene adsorption and reactive oxygen species. Appl Catal B 317:121694

    Article  CAS  Google Scholar 

  • Wen J, Jiang T, Xu Y, Cao J, Xue X (2019a) Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching. J Ind Eng Chem 71:327–335

    Article  CAS  Google Scholar 

  • Wen J, Jiang T, Zhou W, Gao H, Xue X (2019b) A cleaner and efficient process for extraction of vanadium from high chromium vanadium slag: leaching in (NH4)2SO4-H2SO4 synergistic system and NH4+ recycle. Sep Purif Technol 216:126–135

    Article  CAS  Google Scholar 

  • Wen J, Sun Y, Ning P, Xu G, Sun S, Sun Z, Cao H (2022) Deep understanding of sustainable vanadium recovery from chrome vanadium slag: promotive action of competitive chromium species for vanadium solvent extraction. J Hazard Mater 422:126791

    Article  CAS  Google Scholar 

  • Wołowicz A, Wawrzkiewicz M, Hubicki Z, Siwińska-Ciesielczyk K, Kubiak A, Jesionowski T (2022) Enhanced removal of vanadium(V) from acidic streams using binary oxide systems of TiO2-ZrO2 and TiO2-ZnO type. Sep Purif Technol 280:119916

    Article  Google Scholar 

  • Wu B, Liu C, Fu C, Wu P, Liu C, Jiang W (2019) Selective separation of Cr(VI) and V(V) from solution by simple pH controlled two-step adsorption/desorption process with ZrO2. Chem Eng J 373:1030–1041

    Article  CAS  Google Scholar 

  • Xf P, Zhang Y, Bq F, Sl Z, Xj W, Zhang Y, Li P, Fq L (2019b) Complexation separation for vanadium and chromium by dithiocarbamate and its application in treatment of chromium–vanadium-bearing slag. Trans Nonferrous Metals Soc of China 29:2400–2410

    Article  Google Scholar 

  • Xu R, Jian M, Ji Q, Hu C, Tang C, Liu R, Zhang X, Qu J (2020) 2D water-stable zinc-benzimidazole framework nanosheets for ultrafast and selective removal of heavy metals. Chem Eng J 382:122658

    Article  CAS  Google Scholar 

  • Xu CX, Kong YL, Zhang WJ, Yang MD, Wang K, Chang L, Chen W, Huang GB, Zhang J (2022) S-scheme 2D/2D FeTiO3/g-C3N4 hybrid architectures as visible-light-driven photo-Fenton catalysts for tetracycline hydrochloride degradation. Sep Purif Technol 303:122266

    Article  CAS  Google Scholar 

  • Yang X, Huang G, An C, Chen X, Shen J, Yin J, Song P, Xu Z, Li Y (2021) Removal of arsenic from water through ceramic filter modified by nano-CeO2: a cost-effective approach for remote areas. Sci Total Environ 750:141510

    Article  CAS  Google Scholar 

  • Yang H, Zhao ZC, Yang YP, Zhang Z, Chen W, Yan RQ, Jin Y, Zhang J (2022) Defective WO3 nanoplates controllably decorated with MIL-101(Fe) nanoparticles to efficiently remove tetracycline hydrochloride by S-scheme mechanism. Sep Purif Technol 300:121846

    Article  CAS  Google Scholar 

  • Yao N, Meng R, Wu F, Fan Z, Cheng G, Luo W (2020) Oxygen-vacancy-induced CeO2/Co4N heterostructures toward enhanced pH-Universal hydrogen evolution reactions. Appl Catal B 277:119282

    Article  CAS  Google Scholar 

  • Yap PL, Auyoong YL, Hassan K, Farivar F, Tran DNH, Ma J, Losic D (2020) Multithiol functionalized graphene bio-sponge via photoinitiated thiol-ene click chemistry for efficient heavy metal ions adsorption. Chem Eng J 395:124965

    Article  CAS  Google Scholar 

  • Yu J, Cao Q, Li Y, Long X, Yang S, Clark JK, Nakabayashi M, Shibata N, Delaunay JJ (2019) Defect-rich NiCeOx electrocatalyst with ultrahigh stability and low overpotential for water oxidation. ACS Catal 9:1605–1611

    Article  CAS  Google Scholar 

  • Yun YJ, Kumar A, Hong J, Song SJ (2021) Impact of CeO2 nanoparticle morphology: radical scavenging within the polymer electrolyte membrane fuel cell. J Electrochem Soc 168:114521

    Article  CAS  Google Scholar 

  • Zhang R, Leiviskä T (2020) Surface modification of pine bark with quaternary ammonium groups and its use for vanadium removal. Chem Eng J 385:123967

    Article  CAS  Google Scholar 

  • Zhang R, Leiviskä T, Tanskanen J, Gao B, Yue Q (2019) Utilization of ferric groundwater treatment residuals for inorganic-organic hybrid biosorbent preparation and its use for vanadium removal. Chem Eng J 361:680–689

    Article  CAS  Google Scholar 

  • Zhang L, Guo D, Tantai X, Jiang B, Sun Y, Yang N (2020a) Synthesis of three-dimensional hierarchical flower-like Mg–Al layered double hydroxides with excellent adsorption performance for organic anionic dyes. Transactions of Tianjin University 27:394–408

    Article  Google Scholar 

  • Zhang P, O’Connor D, Wang Y, Jiang L, Xia T, Wang L, Tsang DCW, Ok YS, Hou D (2020b) A green biochar/iron oxide composite for methylene blue removal. J Hazard Mater 384:121286

    Article  CAS  Google Scholar 

  • Zhang B, Li Y, Fei Y, Cheng Y (2021a) Novel pathway for vanadium(V) bio-detoxification by Gram-positive Lactococcus raffinolactis. Environ Sci Technol 55:2121–2131

    Article  CAS  Google Scholar 

  • Zhang R, Walder I, Leiviska T (2021b) Pilot-scale field study for vanadium removal from mining-influenced waters using an iron-based sorbent. J Hazard Mater 416:125961

    Article  CAS  Google Scholar 

  • Zhang H, Li P, Zhang X, Chen X, Liu W, Luo L, Han Y, Fan B, Zheng S, Wang Z, Zhang Y (2022a) Removal of vanadium and chromium from vanadium wastewaters with amino-functionalized γ-AlOOH. Hydrometallurgy 210:105841

    Article  CAS  Google Scholar 

  • Zhang M, Arif M, Dong Y, Chen X, Liu X (2022b) Z-scheme TiO2−x@ZnIn2S4 architectures with oxygen vacancies-mediated electron transfer for enhanced catalytic activity towards degradation of persistent antibiotics. Colloids Surf, A 649:129530

    Article  CAS  Google Scholar 

  • Zhang R, Lu J, Dopson M, Leiviska T (2022c) Vanadium removal from mining ditch water using commercial iron products and ferric groundwater treatment residual-based materials. Chemosphere 286:131817

    Article  CAS  Google Scholar 

  • Zhang Y, Lu J, Zhang L, Fu T, Zhang J, Zhu X, Gao X, He D, Luo Y, Dionysiou DD, Zhu W (2022d) Investigation into the catalytic roles of oxygen vacancies during gaseous styrene degradation process via CeO2 catalysts with four different morphologies. Appl Catal B 309:121249

    Article  CAS  Google Scholar 

  • Zhang M, Zhao X, Dong Y, Hu C, Xiang X, Zeng X, Jia J, Jin C, Ding L, Chen X (2023) In-situ synthesis of 0D/1D CeO2/Zn0.4Cd0.6S S-scheme heterostructures for boosting photocatalytic remove of antibiotic and chromium. Ceram Int 49:5842–5853

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China (2021YFC3201400); National Natural Science Foundation of China (22266037); Jiangxi Provincial Natural Science Foundation (20212BAB214051); Jiangxi Provincial Key R&D Project (20223BBG74004); Ganzhou Science and Technology Plan Project (2022CXRC9672 and 2022XM019616); Ganzhou “Su Qu Zhi Guang” Talent Plan (GZSQZG202101006); the Self-deployed Projects of Ganjiang Innovation Academy, Chinese Academy of Sciences (E055A001); and the Research Projects of Ganjiang Innovation Academy, Chinese Academy of Sciences (E055ZA01).

Author information

Authors and Affiliations

Authors

Contributions

Ruixi Lin: methodology, investigation, writing — original draft preparation; Jiarong Li: validation; Xuequan Jing and Meina Guo: formal analysis; Yinhua Wan: funding acquisition; Haonan Qin: visualization; Huifeng Zeng, Feifei Yang, and Da Zhao: software; Guoqing Ren and Weijie Song: resources; Zhangwei Yao: writing — review and editing; Kang Hu: conceptualization, supervision, project administration.

Corresponding author

Correspondence to Kang Hu.

Ethics declarations

Ethics approval

There are no ethical issues with this study.

Consent to participate

All authors agree to participate.

Consent for publication

All authors agree to participate in the publication.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ioannis A. Katsoyiannis

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.41 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, R., Li, J., Jing, X. et al. Enhanced selective separation of vanadium(V) and chromium(VI) using the CeO2 nanorod containing oxygen vacancies. Environ Sci Pollut Res 30, 70731–70741 (2023). https://doi.org/10.1007/s11356-023-27415-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27415-1

Keywords

Navigation