Skip to main content

Advertisement

Log in

In vitro analysis of green synthesized CuO nanoparticles using Tanacetum parthenium extract for multifunctional applications

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Tanacetum parthenium L. is a popular traditional medicinal plant that the role of presence of particular phytochemical compounds are still unconsidered particularly in the bio-nano researches. Here, for the first time, the green fabrication of CuO NPs using Tanacetum parthenium L. extract was performed and assessed for the antimicrobial, cytotoxicity, and dye degradation activities. Characterization of CuO NPs was done by UV-visible spectra, XRD, FT-IR, TEM, and EDX. The synthesized CuO NPs possess a crystalline nature, a functional group that resembles T. parthenium, with a spherical shape particle with an average size of 28 nm. EDX confirmed CuO NPs formation. The CuO NPs showed excellent antimicrobial activity against tested microorganisms. The cytotoxicity of CuO NPs was demonstrated the concentration-dependent inhibition of the growth against both cancer and normal cell lines. The results exhibited concentration-dependent inhibition of the growth of Hela, A 549, and MCF7 cancer cells (IC50 = 65.0, 57.4, and 71.8 µg/mL, respectively), which were statistically significant comparing control cells (IC50 = 226.1 µg/mL). Furthermore, we observed that CuO NPs-induced programmed cell death in the cancer cells were mediated with the downregulation of Bcl2 and upregulation of bax, caspase-3. CuO NPs were verified to be a superb catalyst as they had excellent activity for the degradation of 99.6%, 98.7%, 96.6%, and 96.6% of Congo red, methylene blue, methylene orange, and rhodamine B as industrial dyes in 3, 6.5, 6.5, and 6.5 min, respectively. Overall, the present study nominates T. parthenium as a proper bio-agent in the biosynthesis of CuO NPs with powerful catalytic and antimicrobial activities as well as a cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Ahir M, Bhattacharya S, Karmakar S, Mukhopadhyay A, Mukherjee S, Ghosh S, Chattopadhyay S, Patra P, Adhikary A (2016) Tailored-CuO-nanowire decorated with folic acid mediated coupling of the mitochondrial-ROS generation and miR425-PTEN axis in furnishing potent anti-cancer activity in human triple negative breast carcinoma cells. Biomaterials 76:115–132

    Article  CAS  Google Scholar 

  • Ali K, Saquib Q, Ahmed B, Siddiqui MA, Ahmad J, Al-Shaeri M, Al-Khedhairy AA, Musarrat J (2020) Bio-functionalized CuO NPsinduced apoptotic activities in human breast carcinoma cells and toxicity against Aspergillus flavus: an in vitro approach. Process Biochem 91:387–397. https://doi.org/10.1016/j.procbio.2020.01.008

    Article  CAS  Google Scholar 

  • Baruah D, Goswami M, Yadav RNS, Yadav A (2018) Biogenic synthesis of gold nanoparticles and their application in photocatalytic degradation of toxic dyes. J Photochem 186:51–58. https://doi.org/10.1016/j.jphotobiol.2018.07.002

    Article  CAS  Google Scholar 

  • Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M, Senthil Kumar T, Rao MV (2015) Catalytic degradation of organic dyes using synthesized silver nanoparticles: a green approach. J Bioremed Biodeg 6:1–9

    CAS  Google Scholar 

  • Brown AM, Edwards CM, Davey MR, Power JB, Lowe KC (1997) Pharmacological activity of feverfew (Tanacetum parthenium (L.) Schultz-Bip.): assessment by inhibition of human polymorphonuclear leukocyte chemiluminescence in vitro. J Pharm Pharmacol 49:558–561. https://doi.org/10.1111/j.2042-7158.1997.tb06841.x

    Article  CAS  Google Scholar 

  • Calapai G, Delbò M (2010) Assessment report on Tanacetum parthenium (L.) Schulz Bip. herba. Eur Med Agency 3:1–40

    Google Scholar 

  • Chandrasekaran R, Yadav SA, Sivaperumal S (2020) Phytosynthesis and characterization of copper oxide nanoparticles using the aqueous extract of Beta vulgaris L and evaluation of their antibacterial and anticancer activities. J Cluster Sci 31:221–230. https://doi.org/10.1007/s10876-019-01640-6

    Article  CAS  Google Scholar 

  • Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Material 5:2850–2871. https://doi.org/10.3390/ma5122850

    Article  CAS  Google Scholar 

  • Chatterjee S, Lee MW, Woo SH (2010) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806. https://doi.org/10.1016/j.biortech.2009.10.051

    Article  CAS  Google Scholar 

  • Chauhan A, Verma R, Kumari S, Sharma A, Shandilya P, Li X, Batoo KM, Imran A, Kulshrestha S, Kumar R (2020) Photocatalytic dye degradation and antimicrobial activities of pure and Ag-doped Zno using cannabis sativa leaf extract. Sci Rep 1:7881. https://doi.org/10.1038/s41598-020-64419-0

    Article  CAS  Google Scholar 

  • Dadi R, Azouani R, Traore M, Mielcarek C, Kanaev A (2019) Antibacterial activity of ZnO and CuO NPsagainst gram positive and gram-negative strains. Mater Sci Eng C Mater Biol Appl 104:109968. https://doi.org/10.1016/j.msec.2019.109968

    Article  CAS  Google Scholar 

  • Daphedar AB, Kakkalameli S, Faniband B, Bilal M, Bhargava RN, Romanholo Ferreira LF, Rahdar A, Gurumurthy DM, Mulla SI (2022) Decolorization of various dyes by microorganisms and green-synthesized nanoparticles: current and future perspective. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-21196-9

    Article  Google Scholar 

  • Das R, Bhaumik M, Giri S, Maity A (2017) Sonocatalytic rapid degradation of Congo red dye from aqueous solution using magnetic Fe0/polyaniline nanofibers. Ultrason Sonochem 37:600–613. https://doi.org/10.1016/j.ultsonch.2017.02.022

    Article  CAS  Google Scholar 

  • Dehghan Z, Ranjbar M, Govahi M, Khakdan F (2022) Green synthesis of Ag/Fe3O4 nanocomposite utilizing Eryngium planum L. leaf extract and its potential applications in medicine. J Drug Deliv Sci Technol 67:102941. https://doi.org/10.1016/j.jddst.2021.102941

    Article  CAS  Google Scholar 

  • Deng Z, Zhu H, Peng B, Chen H, Sun Y, Gang X, Jin P, Wang J (2012) Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl Mater Interfaces 4:5625–5632. https://doi.org/10.1021/am3015313

    Article  CAS  Google Scholar 

  • Dey A, Manna S, Chattopadhyay S, Mondal D, Chattopadhyay D, Raj A, Das S, Bag BG, Roy S (2019) Azadirachta indica leaves mediated green synthesized copper oxide nanoparticles induce apoptosis through activation of TNF-alpha and caspases signaling pathway against cancer cells. J Saudi Chem Soc 23:222–238. https://doi.org/10.1016/j.jscs.2018.06.011

    Article  CAS  Google Scholar 

  • Dutta AK, Maji SK, Adhikary B (2013) γ-Fe2O3 nanoparticles: an easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Mater Res Bull 49:28–34. https://doi.org/10.1016/j.materresbull.2013.08.024

    Article  CAS  Google Scholar 

  • El-Sheikh SM, Ismail AA, Al-Sharab JF (2013) Catalytic reduction of p-nitrophenol over precious metals/highly ordered mesoporous silica. New J Chem 37:2399–2407. https://doi.org/10.1039/C3NJ00138E

    Article  CAS  Google Scholar 

  • Fahiminia M, Shamabadi NS, Nasrollahzadeh M, Sajadi SM (2019) Phytosynthesis of Cu/rGO using Euphorbia cheiradenia Boiss extract and study of its ability in the reduction of organic dyes and 4-nitrophenol in aqueous medium. ET Nanobiotechnol 13:202–213

    Article  Google Scholar 

  • Gonawala KH, Mehta MJ (2014) Removal of color from different dye wastewater by using ferric oxide as an adsorbent. J Eng Res Appl 4:102–109. https://doi.org/10.1007/s40201-020-00566-w

    Article  CAS  Google Scholar 

  • Gopinath V, Priyadarshini S, Mani ARA, Yahya R, Sekaran S, Vadivelu J (2016) In vitro toxicity, apoptosis and antimicrobial effects of phyto mediated copper oxide nanoparticles. RSC Adv 112:110986–110995. https://doi.org/10.1039/C6RA13871C

    Article  CAS  Google Scholar 

  • Gowri M, Latha N, Rajan M (2019) Copper oxide nanoparticles synthesized using Eupatorium odoratum, Acanthospermum hispidum leaf extracts, and its antibacterial effects against pathogens: a comparative study. Bionanoscience 9:545–552. https://doi.org/10.1007/s12668-019-00655-7

    Article  Google Scholar 

  • Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM (2016) Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 9:75

    Article  Google Scholar 

  • Hajra KM, Liu JR (2004) Apoptosome dysfunction in human cancer. Apoptosis 6:691–704. https://doi.org/10.1023/B:APPT.0000045786.98031.1d

    Article  Google Scholar 

  • Hassanisaadi M, Bonjar GHS, Rahdar A, Pandey S, Hosseinipour A, Abdolshahi R (2021) Environmentally safe biosynthesis of gold nanoparticles using plant water extracts. Nanomaterials 11:2033

    Article  CAS  Google Scholar 

  • Hassanisaadi M, Bonjar AHS, Rahdar A, Varma RS, Ajalli N, Pandey S (2022) Eco-friendly biosynthesis of silver nanoparticles using Aloysia citrodora leaf extract and evaluations of their bioactivities. Mater Today Commun 33:104183

    Article  CAS  Google Scholar 

  • Hemmati S, Ahmeda A, Salehabadi Y, Zangeneh A, Zangeneh MM (2020) Synthesis, characterization, and evaluation of cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing effects of copper nanoparticles using the aqueous extract of Strawberry fruit and L-Ascorbic acid. Polyhedron 180:114425. https://doi.org/10.1016/j.poly.2020.114425

    Article  CAS  Google Scholar 

  • Ismail MIM (2019) Green synthesis and characterizations of copper nanoparticles. Mater Chem Phys 240:122283. https://doi.org/10.1016/j.matchemphys.2019.122283

    Article  CAS  Google Scholar 

  • Issaabadi Z, Nasrollahzadeh M, Sajadi SM (2017) Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity. J Clean Prod 142:3584–3591. https://doi.org/10.1016/j.jclepro.2016.10.109

    Article  CAS  Google Scholar 

  • Juárez-Maldonado A, Ortega-Ortíz H, Cadenas-Pliego G, Valdés-Reyna J, Pinedo-spinoza J, López-Palestina C, Hernández-Fuentes A (2018) Foliar application of cu nanoparticles modified the content of bioactive compounds in Moringa oleifera Lam. Agronomy 8:67. https://doi.org/10.3390/agronomy8090167

    Article  CAS  Google Scholar 

  • Kanwal Z, Akram Raza M, Riaz S, Manzoor S, Tayyeb A, Sajid I, Naseem S (2019) Synthesis and characterization of silver nanoparticle-decorated cobalt nanocomposites (Co@AgNPs) and their density-dependent antibacterial activity. R Soc Open Sci 6:182135. https://doi.org/10.1098/rsos.182135

    Article  CAS  Google Scholar 

  • Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari M (2018) Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomed 13:8013–8024. https://doi.org/10.2147/IJN.S189295

    Article  CAS  Google Scholar 

  • Kiriyanthan RM, Sharmili SA, Balaji R, Jayashree S, Mahboob S, Al-Ghanim KA, Al-Misned F, Ahmed Z, Govindarajan M, Vaseeharan B (2020) Photocatalytic, antiproliferative and antimicrobial properties of copper nanoparticles synthesized using Manilkara zapota leaf extract: a photodynamic approach. Photodiagn Photodyn Ther 32:102058. https://doi.org/10.1016/j.pdpdt.2020.102058

    Article  CAS  Google Scholar 

  • Kladko DV, Falchevskaya AS, Serov NS, Prilepskii AY (2021) Nanomaterial shape influence on cell behavior. Int J Mol Sci 22:5266

    Article  Google Scholar 

  • Kundu A, Mondal A (2019) Photodegradation of methylene blue under direct sunbeams by synthesized anatase titania nanoparticles. SN Appl Sci 1:1–17. https://doi.org/10.1007/s42452-019-0280-3

    Article  CAS  Google Scholar 

  • Leszczynski J (2010) Bionanoscience: nano meets bio at the interface. Nat Nanotechnol 5:633–634. https://doi.org/10.1038/nnano.2010.182

    Article  CAS  Google Scholar 

  • Manjari G, Saran S, Arun T, Rao AV, Devipriya SP (2017) Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract. J Saudi Chem Soc 21:610–618. https://doi.org/10.1016/j.jscs.2017.02.004

    Article  CAS  Google Scholar 

  • Manokari M, Ravindran CP, Shekhawat MS (2016) Biosynthesis and characterization of zinc oxide nanoparticles using plant extracts of Peperomia pellucida L. and Celosia argentea L. Int J Bot Stud 1:32–37

    Google Scholar 

  • Nagajyothi PC, Muthuraman P, Sreekanth TVM, Kim DH, Shim J (2017) Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 10:215–225. https://doi.org/10.1016/j.arabjc.2016.01.011

    Article  CAS  Google Scholar 

  • Nagaraj E, Karuppannan K, Shanmugam P, Venugopal S (2019) Exploration of bio-synthesized copper oxide nanoparticles using Pterolobium hexapetalum leaf extract by photocatalytic activity and biological evaluations. J Clust Sci 30:1157–1168. https://doi.org/10.1007/s10876-019-01579-8

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM (2015) Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. J Colloid Interface Sci 457:141–147. https://doi.org/10.1016/j.jcis.2015.07.004

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Momeni SS, Sajadi SM (2017) Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe (CN)6. J Colloid Interface Sci 506:471–477. https://doi.org/10.1016/j.jcis.2017.07.072

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Issaabadi Z, Sajadi SM (2019a) Green synthesis of the Ag/Al2O nanoparticles using Bryonia alba leaf extract and their catalytic application for the degradation of organic pollutants. J Mater Sci Mater Electron 30:3847–3859. https://doi.org/10.1007/s10854-019-00668-8

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajjadi M, Sajadi SM, Issaabadi Z (2019b) Green nanotechnology. Interface Sci Technol 28:1–337. https://doi.org/10.1016/B978-0-12-813586-0.00005-5

    Article  CAS  Google Scholar 

  • Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A (2020) ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52:192–203

    Article  CAS  Google Scholar 

  • Pillai AM, Sivasankarapillai VS, Rahdar A, Joseph J, Sadeghfar F, Anuf AR, Rajesh K, Kyzas GZ (2020) Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct 1211:128107

    Article  CAS  Google Scholar 

  • Preeth DR, Shairam M, Suganya N, Hootan R, Kartik R, Pierre K, Suvro C, Rajalakshmi S (2019) Green synthesis of copper oxide nanoparticles using sinapic acid: an underpinning step towards antiangiogenic therapy for breast cancer. J Biol Inorgan Chem 24:633–645

    Article  Google Scholar 

  • Rahdar A, Beyzaei H, Askari F, Kyzas GZ (2020) Gum-based cerium oxide nanoparticles for antimicrobial assay. Appl Phys A 126:324

    Article  CAS  Google Scholar 

  • Rahdar S, Pal K, Mohammadi L, Rahdar A, Gohaniya Y, Samani S, Kyzas GZ (2021) Response surface methodology for the removal of nitrate ions by adsorption onto copper oxide nanoparticles. J Mol Struct 1231:129686

    Article  CAS  Google Scholar 

  • Rajamma R, Gopalakrishnan S, Nair F (2020) Abdul Khadar, B. Baskaran, Antibacterial and anticancer activity of biosynthesized CuO nanoparticles. IET Nanobiotechnol 14:833–838. https://doi.org/10.1049/iet-nbt.2020.0088

    Article  Google Scholar 

  • Rajeshkumar S, Menon S, Kumar SV, Tambuwala MM, Bakshi HA (2019) Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J Photochem Photobiol B Biol 197:111531. https://doi.org/10.1016/j.jphotobiol.2019.111531

    Article  CAS  Google Scholar 

  • Ranjbar M, Kiani M, Khakdan F (2020) Mentha mozaffarianii mediated biogenic zinc nanoparticles target selected cancer cell lines and microbial pathogens. J Drug Deliv Sci Technol 60:102042. https://doi.org/10.1016/j.jddst.2020.102042

    Article  CAS  Google Scholar 

  • Rehana D, Mahendiran D, Kumar RS, Rahiman AK (2017) Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother Biomed Pharmacother 89:1067–1077. https://doi.org/10.1016/j.biopha.2017.02.101

    Article  CAS  Google Scholar 

  • Rodhe Y, Skoglund S, Wallinder IO, Potácová Z, Möller L (2015) Copper based nanoparticles induce high toxicity in leukemic HL60 cells. Toxicol Vitro 29:1711–1719

    Article  CAS  Google Scholar 

  • Rosa-García SCD, Martínez-Torres P, Gómez-Cornelio S, Corral-Aguado MA, Quintana P, Gómez-Ortíz NM (2018) Antifungal activity of ZnO and MgO nanomaterials and their mixtures against Colletotrichum gloeosporioides strains from tropical fruit. J Nanomater 3:1–9. https://doi.org/10.1155/2018/3498527

    Article  CAS  Google Scholar 

  • Rostami-Vartooni A (2017) Green synthesis of CuO NPsloaded on the seashell surface using Rumex crispus seeds extract and its catalytic applications for reduction of dyes. IET Nanobiotechnol 11:349–359. https://doi.org/10.1049/iet-nbt.2016.0149

    Article  Google Scholar 

  • Saberi Riseh R, Gholizadeh Vazvani M, Hassanisaadi M, Skorik YA (2023) Micro-/nano-carboxymethyl cellulose as a promising biopolymer with prospects in the agriculture sector: a review. Polymers 15:440

    Article  CAS  Google Scholar 

  • Sankar R, Maheswari R, Karthik S, Shivashangari KS, Ravikumar V (2014) Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater Sci Eng C 44:234–239. https://doi.org/10.1016/j.msec.2014.08.030

    Article  CAS  Google Scholar 

  • Sathiyavimal S, Vasantharaj S, Veeramani V, Saravanan M, Rajalakshmi G, Kaliannan T, Al-Misned FA, Pugazhendhi A (2021) Green chemistry route of biosynthesized copper oxide nanoparticles using Psidium guajava leaf extract and their antibacterial activity and effective removal of industrial dyes. J Environ Chem Eng 9:105033. https://doi.org/10.1016/j.jece.2021.105033

    Article  CAS  Google Scholar 

  • Sharma JK, Shaheer Akhtar M, Pratibha SA, Singh SG (2015) Green synthesis of CuO NPswith leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J Alloys Comp 632:321–325. https://doi.org/10.1016/j.jallcom.2015.01.172

    Article  CAS  Google Scholar 

  • Sharma S, Kumar K, Thakur N, Chauhan S, Chauhan MS (2021) Eco-friendly Ocimum tenuiflorum green route synthesis of CuO nanoparticles: characterizations on photocatalytic and antibacterial activities. J Environ Chem Eng 9:105395. https://doi.org/10.1016/j.jece.2021.105395

    Article  CAS  Google Scholar 

  • Sharmila G, Pradeep RS, Sandiya K, Santhiya S, Muthukumaran C, Jeyanthi J, Manoj Kumar N, Thirumarimurugan M (2018) Biogenic synthesis of CuO NPsusing Bauhinia tomentosa leaves extract: characterization and its antibacterial application. J Mol Struct 1165:288–292. https://doi.org/10.1016/j.molstruc.2018.04.011

    Article  CAS  Google Scholar 

  • Singh J, Kumar V, Rawat KH, Kim M (2019) Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environ Res 177:108569. https://doi.org/10.1016/j.envres.2019.108569

    Article  CAS  Google Scholar 

  • Sivakami M, Renuka Devi K, Renuka R, Thilagavathi T (2020) Green synthesis of magnetic nanoparticles via Cinnamomum verum bark extract for biological application. J Environ Chem Eng 8:104420. https://doi.org/10.1016/j.jece.2020.104420

    Article  CAS  Google Scholar 

  • Sivaraj R, Rahman PK, Rajiv P, Narendhran S, Venckatesh R (2014) Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 14:255–258. https://doi.org/10.1016/j.saa.2014.03.027

    Article  CAS  Google Scholar 

  • Steckiewicz KP, Barcinska E, Malankowska A, Zauszkiewicz-Pawlak A, Nowaczyk G, Zaleska-Medynska A, Inkielewicz-Stepniak I (2019) Impact of gold nanoparticles shape on their cytotoxicity against human osteoblast and osteosarcoma in in vitro model. Evaluation of the safety of use and anti-cancer potential. J Mater Sci Mater Med 30:22

    Article  Google Scholar 

  • Sukumar S, Rudrasenan A, Padmanabhan Nambiar D (2020) Green-synthesized rice-shaped copper oxide nanoparticles using Caesalpinia bonducella seed extract and their applications. ACS Omega 5:1040–1051

    Article  CAS  Google Scholar 

  • Sundaram CS, Kumar JS, Kumar SS, Ramesh PLN, Zin T, Rao USM (2020) Antibacterial and anticancer potential of Brassica oleracea var acephala using biosynthesised copper nanoparticles. Med J Malaysia 75:677–684

    CAS  Google Scholar 

  • Varaprasad K, López M, Núñez D, Jayaramudu T, Sadiku ER, Karthikeyan C, Oyarzúnc P (2020) Antibiotic copper oxide-curcumin nanomaterials for antibacterial applications. J Mol Liq 300:112353. https://doi.org/10.1016/j.molliq.2019.112353

    Article  CAS  Google Scholar 

  • Vasantharaj S, Sathiyavimal S, Saravanan M, Senthilkumar P, Gnanasekaran K, Shanmugavel M, Manikandan E, Pugazhendhi A (2019) Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: characterization of antibacterial activity and dye degradation potential. J Photochem Photobiol B Biol 191:143–149. https://doi.org/10.1016/j.jphotobiol.2018.12.026

    Article  CAS  Google Scholar 

  • Velsankar K, Aswin Kumar RM, Preethi R, Muthulakshmi V, Sudhahar S (2020) Green synthesis of CuO NPsvia Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. J Environ Chem Eng 8:104123. https://doi.org/10.1016/j.jece.2020.104123

    Article  CAS  Google Scholar 

  • Velsankar K, Suganya S, Muthumari P, Mohandoss S, Sudhahar S (2021) Ecofriendly green synthesis, characterization and biomedical applications of CuO NPssynthesized using leaf extract of Capsicum frutescens. J Environ Chem Eng 9:106299. https://doi.org/10.1016/j.jece.2021.106299

    Article  CAS  Google Scholar 

  • Wang C, Tang K, Wang D, Liu Z, Wang L (2012) Simple self-assembly of HLaNb2O7 nanosheets and Ag nanoparticles/clusters and their catalytic properties. J Mater Chem 22:22929–22934. https://doi.org/10.1039/C2JM34321E

    Article  CAS  Google Scholar 

  • Wang G, Zhao K, Gao C, Wang J, Mei Y, Zheng X, Zhu P (2021) Green synthesis of copper nanoparticles using green coffee bean and their applications for efficient reduction of organic dyes. J Environ Chem Eng 9:105331. https://doi.org/10.1016/j.jece.2021.105331

    Article  CAS  Google Scholar 

  • Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 2:40–44

    Google Scholar 

  • Wierzbicki M, Jaworski S, Sawosz E, Jung A, Gielerak G, Jaremek H, Tojkowski W, Wozniak B, Stobinski L, Matolepszy A, Chwalibog A (2019) Graphene oxide in a composite with silver nanoparticles reduces the fibroblast and endothelial cell cytotoxicity of an antibacterial nano platform. Nanoscale Res Lett 14:320. https://doi.org/10.1186/s11671-019-3166-9

    Article  CAS  Google Scholar 

  • Wongrakpanich A, Mudunkotuwa IA, Geary SM, Morris AS, Mapuskar KA, Spitz DR, Grassian VH, Salem AK (2016) Size-dependent cytotoxicity of copper oxide nanoparticles in lung epithelial cells. Environ Sci Nano 3:365–374. https://doi.org/10.1039/C5EN00271K

    Article  CAS  Google Scholar 

  • Wu S, Rajeshkumar S, Madasamy M, Mahendran V (2020) Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens. Artif Cells Nanomed Biotechnol 48:1153–1158. https://doi.org/10.1080/21691401.2020.1817053

    Article  CAS  Google Scholar 

  • Yugandhar P, Vasavi T, Devi M, Savithramma N (2017) Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity. Appl Nanosci 7:417–427. https://doi.org/10.1007/s13204-017-0584-9

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014a) CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–337

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu P, Chen L, Li G, Zhou F, Lu DD, Sun R, Zhou F, Wong CP (2014b) Hierarchical architectures of monodisperse porous Cu microspheres: synthesis, growth mechanism, high-efficiency and recyclable catalytic performance. J Mater Chem A 2(30):11966–11973. https://doi.org/10.1039/C4TA01920B

    Article  CAS  Google Scholar 

  • Zhao HW, Su HT, Ahmeda A, Sun YQ, Li ZY, Zangeneh MM, Nowrozi M, Zangeneh A, Moradi R (2020) Biosynthesis of copper nanoparticles using Allium eriophyllum Boiss leaf aqueous extract; characterization and analysis of their antimicrobial and cutaneous wound-healing potentials. Appl Organomet Chem36(12): e5587. https://doi.org/10.1002/aoc.5587

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. R. designed the research and interpreted the data. M. R. and F. Kh. conceived the experiments and collected the experimental materials. M. R. supervised the experiments. M. R., F. Kh., and A. M. wrote the manuscript. All authors reviewed and approved the manuscript for submission.

Corresponding author

Correspondence to Mojtaba Ranjbar.

Ethics declarations

The present study work was not conducted on human or experimental animals where national or international guidelines are used for the protection of human subjects and animal welfare.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that all the authors listed in the manuscript have been approved by all of us.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, M., Khakdan, F. & Mukherjee, A. In vitro analysis of green synthesized CuO nanoparticles using Tanacetum parthenium extract for multifunctional applications. Environ Sci Pollut Res 30, 60180–60195 (2023). https://doi.org/10.1007/s11356-023-26706-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26706-x

Keywords

Navigation