Skip to main content
Log in

The important role of the interaction between manganese minerals and metals in environmental remediation: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

With illegal discharge of wastewater containing inorganic and organic pollutants, combined pollution is common and needs urgent attention. Understanding the migration and transformation laws of pollutants in the environment has important guiding significance for environmental remediation. Due to the characteristics of adsorption, oxidation, and catalysis, manganese minerals play important role in the environment fate of pollutants. This review summarizes the forms of interaction between manganese minerals and metals, the environmental importance of the interaction between manganese minerals and metals, and the contribution of this interaction in improving performance of Mn-based composite for environmental remediation. The literatures have indicated that the interactions between manganese minerals and metals involve in surface adsorption, lattice replacement, and formation of association minerals. The interaction between manganese minerals and metals plays an important role in environmental behavior of element and environmental significance of manganese minerals. The synergistic or antagonistic effect resulted from the interaction influence the purification of heavy metal and organism pollutant. The synergistic effect benefited from the coordination of adsorption and oxidation, convenient electron transfer, abundant oxygen vacancies, and fast migration of lattice oxygen. Based on the synergy, Mn-based composites have been widely used for environmental remediation. The synthesize methods of Mn-based composites mainly include homogeneous coprecipitation, chemical etching route, hydrothermal, homogeneous chelating sol–gel, and ethylene glycol reduction strategy. This review is helpful to fully understand the migration and transformation process of pollutants in the environment, expand the resource utilization of manganese minerals for environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used during the current study are available from the corresponding author on reasonable request.

References

  • Abbasi M, Sabzehmeidani MM, Ghaedi M, Jannesar R, Shokrollahi A (2021) Synthesis of grass-like structured Mn-Fe layered double hydroxides/PES composite adsorptive membrane for removal of malachite green. Appl Clay Sci 203:105946

    CAS  Google Scholar 

  • Afzal S, Quan X, Zhang J (2017) High surface area mesoporous nanocast LaMO3 (M = Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism. Appl Catal B-Environ 206:692–703

    CAS  Google Scholar 

  • Alali AF, Almojil SF, Almohana AI, Anqi AE, Rajhi AA, Alamri S, Dhahad HA (2022) Hydroxyapatite@Mn-Fe composite as a reusable sorbent for removal of Nile blue dye and Cr(VI) from polluted water. Environ Sci Pollut R 3:22821

    Google Scholar 

  • Amulya PP, Priyanka R, Sanjukta A, Kumar BJ, Swain SK (2020) Enhanced performance of a core–shell structured Fe(0)@Fe oxide and Mn(0)@Mn oxide (ZVIM) nanocomposite towards remediation of arsenic contaminated drinking water. J Mater Chem A 8:4318–4333

    Google Scholar 

  • Atkins AL, Shaw S, Peacock CL (2014) Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments. Geochim Cosmochim Acta 144:109–125

    CAS  Google Scholar 

  • Bai Y, Yang T, Liang J, Qu J (2016) The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems. Water Res 98:119–127

    CAS  Google Scholar 

  • Bai Y, Jefferson WA, Liang J, Yang T, Qu J (2017) Antimony oxidation and adsorption by in-situ formed biogenic Mn oxide and Fe–Mn oxides. J Environ Sci-China 54:126–134

    CAS  Google Scholar 

  • Barceloux DG (1999) manganese. Clin Toxicol 37:293–307

    CAS  Google Scholar 

  • Berezhnaya E, Dubinin A, Rimskaya-Korsakova M, Safin T (2018) Accumulation of Platinum Group Elements in Hydrogenous Fe–Mn Crust and Nodules from the Southern Atlantic Ocean. Minerals-Basel 8:275

    Google Scholar 

  • Bochatay L, Persson P (2000) Metal Ion Coordination at the Water-Manganite (γ-MnOOH) Interface. J Colloid Interf Sci 229:593–599

    CAS  Google Scholar 

  • Cano-Salazar LF, Martínez-Luévanos A, Claudio-Rizo JA, Carrillo-Pedroza FR, Montemayor SM, Rangel-Mendez JR (2020) Synthesis, structural characterization and Cu(II) adsorption behavior of manganite (g-MnOOH) nanorods. Rsc Adv 10:179–186

    CAS  Google Scholar 

  • Cao D, Zeng H, Yang B, Zhao X (2017) Mn assisted electrochemical generation of two-dimensional Fe-Mn layered double hydroxides for efficient Sb(V) removal. J Hazard Mater 336:33–40

    CAS  Google Scholar 

  • Chang J, Tani Y, Naitou H, Miyata N, Seyama H (2014) Sequestration of Cd(II) and Ni(II) ions on fungal manganese oxides associated with Mn(II) oxidase activity. Appl Geochem 47:198–208

    CAS  Google Scholar 

  • Chawla M, Dubey R, Singh G, Sengupta SK, Siril PF (2017) Controlling the morphology of layered double hydroxides of Mn and Co and their exceptional catalytic activities. Thermochim Acta 654:130–139

    CAS  Google Scholar 

  • Chen M, Wu P, Yu L, Liu S, Ruan B, Hu H, Zhu N, Lin Z (2017a) FeOOH-loaded MnO2 nano-composite: An efficient emergency material for thallium pollution incident. J Environ Manage 192:31–38

    CAS  Google Scholar 

  • Chen S, Chen H, Li C, Fan M, Lv C, Tian G, Shu K (2017b) Tuning the electrochemical behavior of CoxMn3−x sulfides by varying different Co/Mn ratios in supercapacitor. J Mater Sci 52:6687–6696

    CAS  Google Scholar 

  • Chen J, Wang J, Zhang G, Wu Q, Wang D (2018a) Facile fabrication of nanostructured cerium-manganese binary oxide for enhanced arsenite removal from water. Chem Eng J 334:1518–1526

    CAS  Google Scholar 

  • Chen S, Zhang S, Wang T, Lei Z, Zhu M, Dai X, Liu F, Li J, Yin H (2018b) Structure and properties of vanadium-doped α-MnO2 and enhanced Pb2+ adsorption phenol/photocatalytic degradation. Mater Chem Phys 208:258–267

    CAS  Google Scholar 

  • Chen M, Wu P, Huang Z, Liu J, Li Y, Zhu N, Dang Z, Bi Y (2019a) Environmental application of MgMn-layered double oxide for simultaneous efficient removal of tetracycline and Cd pollution: Performance and mechanism. J Environ Manage 246:164–173

    CAS  Google Scholar 

  • Chen M, Wu P, Li S, Yang S, Lin Z, Dang Z (2019b) The effects of interaction between vermiculite and manganese dioxide on the environmental geochemical process of thallium. Sci Total Environ 669:903–910

    CAS  Google Scholar 

  • Chen M, Liu J, Bi Y, Rehman S, Dang Z, Wu P (2020a) Multifunctional magnetic MgMn-oxide composite for efficient purification of Cd2+ and paracetamol pollution: Synergetic effect and stability. J Hazard Mater 388:122078

    CAS  Google Scholar 

  • Chen M, Wu P, Zhu N, Dang Z, Bi Y, Pei F (2020b) Re-utilization of spent Cu2+-immobilized MgMn-layered double hydroxide for efficient sulfamethoxazole degradation: Performance and metals synergy. Chem Eng J 392:123709

    CAS  Google Scholar 

  • Chen Z, Liu T, Dong J, Chen G, Li Z, Zhou J, Chen Z (2022) Enhanced Cr (VI) reduction and removal by Fe/Mn oxide biochar composites under acidic simulated wastewater. Environ Sci Pollut R 24367

  • Chigrin PG, Kirichenko EA (2018) Catalytic Properties of Zinc Manganites for Carbon Oxidation. Inorg Mater 54:1131–1135

    CAS  Google Scholar 

  • Chukanov NV, Aksenov SM, Jančev S, Pekov IV, Göttlicher J, Polekhovsky YS, Rusakov VS, Nelyubina YV, Van KV (2016) A new mineral species ferricoronadite, Pb[Mn64+(Fe3+, Mn3+)2]O16: mineralogical characterization, crystal chemistry and physical properties. Phys Chem Miner 43:503–514

    CAS  Google Scholar 

  • Crowther JGDA (1982) The oxidation states of cobalt and selected metals in Pacific ferromanganese nodules. Geochim Cosmochim Acta 46:755–759

    Google Scholar 

  • Cruz-Hernández Y, Villalobos M, Marcus MA, Pi-Puig T, Zanella R, Martínez-Villegas N (2019) Tl(I) sorption behavior on birnessite and its implications for mineral structural changes. Geochim Cosmochim Acta 248:356–369

    Google Scholar 

  • Cuo Z, Deng Y, Li W, Peng S, Zhao F, Liu H, Chen Y (2018) Monolithic Mn/Ce-based catalyst of fibrous ceramic membrane for complete oxidation of benzene. Appl Surf Sci 456:594–601

    CAS  Google Scholar 

  • Cyprian Y, Abasi IPEE (2019) Synthesis, characterisation of ternary layered double hydroxides (LDH) for sorption kinetics and thermodynamics of Cd2+. Int J Biometeorol 76:441–455

    Google Scholar 

  • Deng Y, Tang W, Li W, Chen Y (2018) MnO2-nanowire@NiO-nanosheet core-shell hybrid nanostructure derived interfacial Effect for promoting catalytic oxidation activity. Catal Today 308:58–63

    CAS  Google Scholar 

  • Dong Y, Zhao J, Zhang J, Chen Y, Yang X, Song W, Wei L, Li W (2020) Synergy of Mn and Ni enhanced catalytic performance for toluene combustion over Ni-doped α-MnO2 catalysts. Chem Eng J 388:124244

    CAS  Google Scholar 

  • Du Y, Wang Q, Liang X, Yang P, He Y, Feng J, Li D (2017) The role of various oxygen species in Mn-based layered double hydroxide catalysts in selective alcohol oxidation. Catal Sci Technol 7:4361–4365

    CAS  Google Scholar 

  • Du J, Bao J, Liu Y, Kim SH, Dionysiou DD (2019) Facile preparation of porous Mn/Fe3O4 cubes as peroxymonosulfate activating catalyst for effective bisphenol A degradation. Chem Eng J 376:119193

    CAS  Google Scholar 

  • Du Z, Li K, Zhou S, Liu X, Yu Y, Zhang Y, He Y, Zhang Y (2020) Degradation of ofloxacin with heterogeneous photo-Fenton catalyzed by biogenic Fe-Mn oxides. Chem Eng J 380:122427

    CAS  Google Scholar 

  • Du Y, Zhen S, Wang J, Ma Y, Wu J, Dai H (2022) FeOOH-MnO2/Sepiolite and Fe2O3-MnO2/Diatomite: Highly efficient adsorbents for the removal of As(V). Appl Clay Sci 222:106491

    CAS  Google Scholar 

  • Elzinga EJ (2011) Reductive Transformation of Birnessite by Aqueous Mn(II). Environ Sci Technol 45:6366–6372

    CAS  Google Scholar 

  • Fang Z, Pan S, Zhang X, Lv L, Pan B (2022) Highly efficient removal of arsenite from water by using renewable Zr-Mn binary oxides confined inside gel-type ion exchanger. Chem Eng J 431:134082

    CAS  Google Scholar 

  • Feng Y, Wu D, Deng Y, Zhang T, Shih K (2016) Sulfate Radical-Mediated Degradation of Sulfadiazine by CuFeO2 Rhombohedral Crystal-Catalyzed Peroxymonosulfate: Synergistic Effects and Mechanisms. Environ Sci Technol 50:3119–3127

    CAS  Google Scholar 

  • Foroutan R, Mohammadi R, Adeleye AS, Farjadfard S, Esvandi Z, Arfaeinia H, Sorial GA, Ramavandi B, Sahebi S (2019) Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents. Environ Sci Pollut R 26:29748–29762

    CAS  Google Scholar 

  • Gao T, Shen Y, Jia Z, Qiu G, Liu F, Zhang Y, Feng X, Cai C (2015) Interaction mechanisms and kinetics of ferrous ion and hexagonal birnessite in aqueous systems. Geochem T 16:1–14

    Google Scholar 

  • Gao F, Chu C, Zhu W, Tang X, Yi H, Zhang R (2019) High-efficiency catalytic oxidation of nitric oxide over spherical Mn Co spinel catalyst at low temperature. Appl Surf Sci 479:548–556

    CAS  Google Scholar 

  • Gong Z, Wang H, Vayenas DV, Yan Q (2022) Enhanced electrochemical removal of sulfadiazine using stainless steel electrode coated with activated algal biochar. J Environ Manage 306:114535

    CAS  Google Scholar 

  • Grangeon S, Manceau A, Guilhermet J, Gaillot A, Lanson M, Lanson B (2012) Zn sorption modifies dynamically the layer and interlayer structure of vernadite. Geochim Cosmochim Acta 85:302–313

    CAS  Google Scholar 

  • Guo H, Kou X, Zhao Y, Wang S, Sun Q, Ma X (2018) Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: Textural properties, electron donation, and oxygen vacancy. Chem Eng J 334:237–246

    CAS  Google Scholar 

  • Guo W, Guo R, Pei H, Wang B, Liu N, Mo Z (2022) Electrospinning PAN/PEI/MWCNT-COOH nanocomposite fiber membrane with excellent oil-in-water separation and heavy metal ion adsorption capacity. Colloids Surf A Physicochem Eng Asp 641:128557

    CAS  Google Scholar 

  • He X, Qiu X, Hu C, Liu Y (2018) Treatment of heavy metal ions in wastewater using layered double hydroxides: A review. J Disper Sci Technol 39:792–801

    CAS  Google Scholar 

  • Holguera JG, Etui ID, Jensen LHS, Peña J (2018) Contaminant loading and competitive access of Pb, Zn and Mn(III) to vacancy sites in biogenic MnO2. Chem Geol 502:76–87

    CAS  Google Scholar 

  • Hou L, Li X, Yang Q, Chen F, Wang S, Ma Y, Wu Y, Zhu X, Huang X, Wang D (2019a) Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation. Sci Total Environ 663:453–464

    CAS  Google Scholar 

  • Hou Z, Ma J, Fan C, Peng M, Komarneni S (2019b) Iron activated sodium bisulfite enhances generation of Mn(III) species through the MnO2/bisulfite catalytic process. Ceram Int 45:892–898

    CAS  Google Scholar 

  • Huang X, Chen T, Zou X, Zhu M, Chen D, Pan M (2017a) The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques. Int J Env Res Pub He 14:1145

    Google Scholar 

  • Huang G, Wang C, Yang C, Guo P, Yu H (2017b) Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with Mn1.8Fe1.2O4 Nanospheres: Synergism between Mn and Fe. Environ Sci Technol 51:12611–12618

    CAS  Google Scholar 

  • Hyok Ri S, Bi F, Guan A, Zhang X (2021) Manganese-cerium composite oxide pyrolyzed from metal organic framework supporting palladium nanoparticles for efficient toluene oxidation. J Colloid Interf Sci 586:836–846

    CAS  Google Scholar 

  • Ibrahim M, Labaki M, Nuns N, Giraudon JM, Lamonier JF (2019) Cu-Mn Hydroxyapatite Materials for Toluene Total Oxidation. ChemCatChem 12:550–560

    Google Scholar 

  • Ibrahim Y, Wadi VS, Ouda M, Naddeo V, Banat F, Hasan SW (2022) Highly selective heavy metal ions membranes combining sulfonated polyethersulfone and self-assembled manganese oxide nanosheets on positively functionalized graphene oxide nanosheets. Chem Eng J 428:131267

    CAS  Google Scholar 

  • Imran M, Iqbal MM, Iqbal J, Shah NS, Khan ZUH, Murtaza B, Amjad M, Ali S, Rizwan M (2021) Synthesis, characterization and application of novel MnO and CuO impregnated biochar composites to sequester arsenic (As) from water: Modeling, thermodynamics and reusability. J Hazard Mater 401:123338

    CAS  Google Scholar 

  • Javier SE, Yusta I (2019) Coprecipitation of Co2+, Ni2+ and Zn2+ with Mn(III/IV) Oxides Formed in Metal-Rich MineWaters. Minerals-Basel 9:926–947

    Google Scholar 

  • Jiang X, Yao D, Lin X, Zhai S (2009) Factors controlling the distribution of transitional metal elements in marine hydrogenic ferromanganese crusts. J Ocean u China 8:57–64

    CAS  Google Scholar 

  • Jin C, Li Z, Huang M, Ding X, Zhou M, Cai C, Chen J (2022) Cadmium immobilization in lake sediment using different crystallographic manganese oxides: Performance and mechanism. J Environ Manage 313:114995

    CAS  Google Scholar 

  • Joshi TP, Zhang G, Koju R, Qi Z, Liu R, Liu H, Qu J (2017) The removal efficiency and insight into the mechanism of para arsanilic acid adsorption on Fe-Mn framework. Sci Total Environ 601–602:713–722

    Google Scholar 

  • Kashiwabara T, Mitsunobu S, Das A, Itai T, Tanimizu M, Takahashi Y (2008) Oxidation States of Antimony and Arsenic in Marine Ferromanganese Oxides Related to Their Fractionation in Oxic Marine Environment. Chem Lett 37:756–757

    CAS  Google Scholar 

  • Kuang J, Ba Z, Li Z, Jia Y, Wang Z (2019) Fabrication of a superhydrophobic Mg-Mn layered double hydroxides coating on pure magnesium and its corrosion resistance. Surf Coat Tech 361:75–82

    CAS  Google Scholar 

  • Kwon KD, Refson K, Sposito G (2009) Zinc surface complexes on birnessite: A density functional theory study. Geochim Cosmochim Acta 73:1273–1284

    CAS  Google Scholar 

  • Kwon KD, Refson K, Sposito G (2010) Surface complexation of Pb(II) by hexagonal birnessite nanoparticles. Geochim Cosmochim Acta 74:6731–6740

    CAS  Google Scholar 

  • Kwon KD, Refson K, Sposito G (2013) Understanding the trends in transition metal sorption by vacancy sites in birnessite. Geochim Cosmochim Acta 101:222–232

    CAS  Google Scholar 

  • Lee J, Ju JB, Cho WI, Cho BW, Oh SH (2013) Todorokite-type MnO2 as a zinc-ion intercalating material. Electrochim Acta 112:138–143

    CAS  Google Scholar 

  • Lefkowitz JP, Elzinga EJ (2015) Impacts of Aqueous Mn(II) on the Sorption of Zn(II) by Hexagonal Birnessite. Environ Sci Technol 49:4886–4893

    CAS  Google Scholar 

  • Lefkowitz JP, Elzinga EJ (2017) Structural alteration of hexagonal birnessite by aqueous Mn(II): Impacts on Ni(II) sorption. Chem Geol 466:524–532

    CAS  Google Scholar 

  • Li H, Liu F, Zhu M, Feng X, Zhang J, Yin H (2015a) Structure and properties of Co-doped cryptomelane and its enhanced removal of Pb2+ and Cr3+ from wastewater. J Environ Sci-China 34:77–85

    Google Scholar 

  • Li W, Wu P, Zhu Y, Huang Z, Lu Y, Li Y, Dang Z, Zhu N (2015b) Catalytic degradation of bisphenol A by CoMnAl mixed metal oxides catalyzed peroxymonosulfate: Performance and mechanism. Chem Eng J 279:93–102

    CAS  Google Scholar 

  • Li H, Chen Y, Long J, Li X, Jiang D, Zhang P, Qi J, Huang X, Liu J, Xu R (2017a) Removal of thallium from aqueous solutions using Fe-Mn binary oxides. J Hazard Mater 338:296–305

    CAS  Google Scholar 

  • Li H, Chen Y, Long J, Li X, Jiang D, Zhang P, Qi J, Huang X, Liu J, Xu R, Gong J (2017b) Removal of thallium from aqueous solutions using Fe-Mn binary oxides. J Hazard Mater 338:296–305

    CAS  Google Scholar 

  • Li W, Liu H, Ma X, Mo S, Li S, Chen Y (2018) Fabrication of silica supported Mn–Ce benzene oxidation catalyst by a simple and environment-friendly oxalate approach. J Porous Mat 25:107–117

    CAS  Google Scholar 

  • Li Y, Liu F, Xu X, Liu Y, Li Y, Ding H, Chen N, Yin H, Lin H, Wang C, Lu A (2019a) Influence of heavy metal sorption pathway on the structure of biogenic birnessite: Insight from the band structure and photostability. Geochim Cosmochim Acta 256:116–134

    CAS  Google Scholar 

  • Li Y, Wang X, Li Y, Duan J, Jia H, Ding H, Lu A, Wang C, Nie Y, Wu X (2019b) Coupled anaerobic and aerobic microbial processes for Mn-carbonate precipitation: A realistic model of inorganic carbon pool formation. Geochim Cosmochim Acta 256:49–65

    CAS  Google Scholar 

  • Li L, Zhang C, Yan J, Wang D, Peng Y, Li J, Crittenden J (2020) Distinctive bimetallic oxides for enhanced catalytic toluene combustion: Insights into the tunable fabrication of Mn-Ce hollow structure. ChemCatChem 12:2872–2879

    CAS  Google Scholar 

  • Li G, Li N, Sun Y, Qu Y, Jiang Z, Zhao Z, Zhang Z, Cheng J, Hao Z (2021) Efficient defect engineering in Co-Mn binary oxides for low-temperature propane oxidation. Appl Catal B 282:119512

    CAS  Google Scholar 

  • Li M, Kuang S, Kang Y, Ma H, Dong J, Guo Z (2022a) Recent advances in application of iron-manganese oxide nanomaterials for removal of heavy metals in the aquatic environment. Sci Total Environ 819:153157

    CAS  Google Scholar 

  • Li Q, Ma X, Qi C, Li R, Zhang W, Li J, Shen J, Sun X (2022b) Facile preparation of novel magnetic mesoporous Fe Mn binary oxides from Mn encapsulated carboxymethyl cellulose-Fe(III) hydrogel for antimony removal from water. Sci Total Environ 821:153529

    CAS  Google Scholar 

  • Liang P, Zeng Q, Tie B, Ming L, Song Z (2015) MnO2 Nanosheet Suspension: a Novel Absorbent for Cd(II) Contamination in waterbody. J Colloid Interf Sci 456:108–115

    Google Scholar 

  • Liang X, Post JE, Lanson B, Wang X, Zhu M, Liu F, Tan W, Feng X, Zhu G, Zhang X, De Yoreo JJ (2020) Coupled morphological and structural evolution of δ-MnO2 to α-MnO2 through multistage oriented assembly processes: the role of Mn(III). Environ Sci: Nano 7:238–249

    CAS  Google Scholar 

  • Liang M, Guo H, Xiu W (2022a) Effects of low molecular weight organic acids with different functional groups on arsenate adsorption on birnessite. J Hazard Mater 436:129108

    CAS  Google Scholar 

  • Liang X, Ye Q, Zhao Y, Yang Z, Yang Q (2022b) Efficient removal of arsenite through oxidation and adsorption on MWCNTs-decorated Ce-Mn binary oxide nanoparticles. Surf Interfaces 30:101911

    CAS  Google Scholar 

  • Lin J, Guo Y, Chen X, Li C, Lu S, Liew KM (2018) CO Oxidation over Nanostructured Ceria Supported Bimetallic Cu–Mn Oxides Catalysts: Effect of Cu/Mn Ratio and Calcination Temperature. Catal Lett 148:181–193

    CAS  Google Scholar 

  • Liu R, Liu F, Hu C, He Z, Liu H, Qu J (2015a) Simultaneous removal of Cd(II) and Sb(V) by Fe-Mn binary oxide: Positive effects of Cd(II) on Sb(V) adsorption. J Hazard Mater 300:847–854

    CAS  Google Scholar 

  • Liu R, Liu F, Hu C, He Z, Liu H, Qu J (2015b) Simultaneous removal of Cd(II) and Sb(V) by Fe–Mn binary oxide: Positive effects of Cd(II) on Sb(V) adsorption. J Hazard Mater 300:847–854

    CAS  Google Scholar 

  • Liu H, Lu X, Li J, Chen X, Zhu X, Xiang W, Zhang R, Wang X, Lu J, Wang R (2017) Geochemical fates and unusual distribution of arsenic in natural ferromanganese duricrust. Appl Geochem 76:74–87

    CAS  Google Scholar 

  • Liu P, Wei G, Liang X, Chen D, He H, Chen T, Xi Y, Chen H, Han D, Zhu J (2018) Synergetic effect of Cu and Mn oxides supported on palygorskite for the catalytic oxidation of formaldehyde: Dispersion, microstructure, and catalytic performance. Appl Clay Sci 161:265–273

    CAS  Google Scholar 

  • Liu L, Sun J, Ding J, Zhang Y, Sun T, Jia J (2019a) Highly Active Mn3-xFexO4 Spinel with Defects for Toluene Mineralization: Insights into Regulation of the Oxygen Vacancy and Active Metals. Inorg Chem 58:13241–13249

    CAS  Google Scholar 

  • Liu W, Sun B, Qiao J, Guan X (2019b) Influence of Pyrophosphate on the Generation of Soluble Mn(III) from Reactions Involving Mn Oxides and Mn(VII). Environ Sci Technol 53:10227–10235

    CAS  Google Scholar 

  • Liu J, Wang T, Shi N, Yang J, Serageldin MA, Pan W (2022a) Enhancing the interaction between Mn and Ce oxides supported on fly ash with organic acid ligands interface modification for effective VOC removal: A combined experimental and DFT+U study. Fuel 313:123043

    CAS  Google Scholar 

  • Liu L, Zhang M, Suib SL, Qiu G (2022b) Rapid photooxidation and removal of As(III) from drinking water using Fe-Mn composite oxide. Water Res 226:119297

    CAS  Google Scholar 

  • Lu A, Li Y, Ding H, Xu X, Li Y, Ren G, Liang J, Liu Y, Hong H, Chen N, Chu S, Liu F, Li Y, Wang H, Ding C, Wang C, Lai Y, Liu J, Dick J, Liu K, Hochella MF (2019) Photoelectric conversion on Earth’s surface via widespread Fe- and Mn-mineral coatings. P Natl Acad Sci USA 116:9741–9746

    CAS  Google Scholar 

  • Luo M, Cheng Y, Peng X, Pan W (2019) Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene. Chem Eng J 369:758–765

    CAS  Google Scholar 

  • Ma Y, Ma Y, Wang Q, Schweidler S, Botros M, Fu T, Hahn H, Brezesinski T, Breitung B (2021) High-entropy energy materials: challenges and new opportunities. Energ Environ Sci 14:2295–2883

    Google Scholar 

  • Ma J, Guo H, Lei M, Zhou X, Li F, Yu T, Wei R, Zhang H, Zhang X, Wu Y (2015) Arsenic Adsorption and its Fractions on Aquifer Sediment: Effect of pH, Arsenic Species, and Iron/Manganese Minerals. Water Air Soil Poll 226:260.1–260.15

  • Machado-Infante J, Ramírez-Caballero G, Barajas Meneses MJ (2016) Study of the adsorption capacity of Fe(II) dissolved in water by using a mineral rich in Manganese Dioxide (MnO2) from Colombia. Dyna-Bilbao 83:223–228

    Google Scholar 

  • Maeno MY, Ohashi H, Yonezu K, Miyazaki A, Okaue Y, Watanabe K, Ishida T, Tokunaga M, Yokoyama T (2016) Sorption behavior of the Pt(II) complex anion on manganese dioxide (δ-MnO2): a model reaction to elucidate the mechanism by which Pt is concentrated into a marine ferromanganese crust. Miner Deposita 51:211–218

    CAS  Google Scholar 

  • Marcus MA, Manceau A, Kersten M (2004) Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule. Geochim Cosmochim Acta 68:3125–3136

    CAS  Google Scholar 

  • Marcus MA, Toner BM, Takahashi Y (2018) Forms and distribution of Ce in a ferromanganese nodule. Mar Chem 202:58–66

    CAS  Google Scholar 

  • Marsh A, Heath A, Patureau P, Evernden P, Walker P (2019) Influence of clay minerals and associated minerals in alkali activation of soils. Constr Build Mater 229:116816

    CAS  Google Scholar 

  • McCann CM, Peacock CL, Hudson-Edwards KA, Shrimpton T, Gray ND, Johnson KL (2018) In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil. J Hazard Mater 342:724–731

    CAS  Google Scholar 

  • Najjar H, Batis H (2016) Development of Mn-based perovskite materials: Chemical structure and applications. Catalysis Reviews 58:371–438

    CAS  Google Scholar 

  • Nicolas-Tolentino E, Tian Z, Zhou H, Xia G, Suib SL (1999) Effects of Cu2+ Ions on the Structure and Reactivity of Todorokite- and Cryptomelane-Type Manganese Oxide Octahedral Molecular Sieves. Chem Mater 11:1733–1741

    CAS  Google Scholar 

  • Nishi K, Usui A, Nakasato Y, Yasuda H (2017) Formation age of the dual structure and environmental change recorded in hydrogenetic ferromanganese crusts from Northwest and Central Pacific seamounts. Ore Geol Rev 87:62–70

    Google Scholar 

  • Otgonjargal E, Kim Y, Park S, Baek K, Yang J (2012) Mn-Fe Layered Double Hydroxides for Adsorption of As(III) and As(V). Sep Sci Technol 47:2192–2198

    CAS  Google Scholar 

  • Pala SL, Biftu WK, Mekala S, Ravindhranath K (2022) Adsorptive removal of toxic chromate and phosphate ions from polluted water using green-synthesized nanometal (Mn-Al-Fe) oxide. Biomass Convers Bior 129:1–19

    Google Scholar 

  • Pan F, Ji H, Du P, Huang T, Wang C, Liu W (2021) Insights into catalytic activation of peroxymonosulfate for carbamazepine degradation by MnO2 nanoparticles in-situ anchored titanate nanotubes: Mechanism, ecotoxicity and DFT study. J Hazard Mater 402:123779

    CAS  Google Scholar 

  • Panda AP, Rout P, Kumar SA, Jha U, Swain SK (2020) Enhanced performance of a core-shell structured Fe(0)@Fe oxide and Mn(0)@Mn oxide (ZVIM) nanocomposite towards remediation of arsenic contaminated drinking water. J Mater Chem a 8:4318–4333

    CAS  Google Scholar 

  • Peacock CL, Moon EM (2012) Oxidative scavenging of thallium by birnessite: Explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. Geochim Cosmochim Acta 84:297–313

    CAS  Google Scholar 

  • Peña J, Kwon KD, Refson K, Bargar JR, Sposito G (2010) Mechanisms of nickel sorption by a bacteriogenic birnessite. Geochim Cosmochim Acta 74:3076–3089

    Google Scholar 

  • Peng C, Xing H, Xue Y, Wang J, Li J, Wang E (2020) Ratiometric sensing of alkaline phosphatase based on the catalytical activity from Mn-Fe layered double hydroxide nanosheets. Nanoscale 12:2022–2027

    CAS  Google Scholar 

  • Peng Y, Tang H, Yao B, Gao X, Yang X, Zhou Y (2021) Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review. Chem Eng J 414:128800

    CAS  Google Scholar 

  • Pirajno F (2015) Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection. Gondwana Res 27:1181–1216

    CAS  Google Scholar 

  • Pranudta A, Klysubun W, El-Moselhy MM, Padungthon S (2020) Synthesis optimization and X-ray absorption spectroscopy investigation of polymeric anion exchanger supported binary Fe/Mn oxides nanoparticles for enhanced As(III) removal. React Funct Polym 147:104441

    CAS  Google Scholar 

  • Qin Q, Wang Q, Fu D, Ma J (2011) An efficient approach for Pb(II) and Cd(II) removal using manganese dioxide formed in situ. Chem Eng J 172:68–74

    CAS  Google Scholar 

  • Qin Z, Xiang Q, Liu F, Xiong J, Koopal LK, Zheng L, Ginder-Vogel M, Wang M, Feng X, Tan W, Yin H (2017) Local structure of Cu2+ in Cu-doped hexagonal turbostratic birnessite and Cu2+ stability under acid treatment. Chem Geol 466:512–523

    CAS  Google Scholar 

  • Qin Z, Yin H, Wang X, Zhang Q, Lan S, Koopal LK, Zheng L, Feng X, Liu F (2018) The preferential retention of ZnVI over ZnIV on birnessite during dissolution/desorption. Appl Clay Sci 161:169–175

    CAS  Google Scholar 

  • Qin H, Uesugi S, Yang S, Tanaka M, Kashiwabara T, Itai T, Usui A, Takahashi Y (2019a) Enrichment mechanisms of antimony and arsenic in marine ferromanganese oxides: Insights from the structural similarity. Geochim Cosmochim Acta 257:110–130

    CAS  Google Scholar 

  • Qin Z, Liu F, Lan S, Li W, Yin H, Zheng L, Zhang Q (2019b) Effect of γ-manganite particle size on Zn2+ coordination environment during adsorption and desorption. Appl Clay Sci 168:68–76

    CAS  Google Scholar 

  • Reykhard LY, Shulga NA (2019) Fe-Mn nodule morphotypes from the NE Clarion-Clipperton Fracture Zone, Pacific Ocean: Comparison of mineralogy, geochemistry and genesis. Ore Geol Rev 110:102933

    Google Scholar 

  • Robinson DM, Go YB, Mui M, Gardner G, Zhang Z, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes GC (2013) Photochemical Water Oxidation by Crystalline Polymorphs of Manganese Oxides: Structural Requirements for Catalysis. J Am Chem Soc 135:3494–3501

    CAS  Google Scholar 

  • Ruiz-Garcia M, Villalobos M, Voegelin A, Pi-Puig T, Martínez-Villegas N, Göttlicher J (2021) Transformation of hexagonal birnessite upon reaction with thallium(I): Effects of birnessite crystallinity, pH, and thallium concentration. Environ Sci Technol 55:4862–4870

    CAS  Google Scholar 

  • Sarkar S, Biswas A, Purkait T, Das M, Kamboj N, Dey RS (2020) Unravelling the Role of Fe–Mn Binary Active Sites Electrocatalyst for Efficient Oxygen Reduction Reaction and Rechargeable Zn-Air Batteries. Inorg Chem 59:5194–5205

    CAS  Google Scholar 

  • Sasaki K, Yu Q, Momoki T, Kaseyama T (2014) Adsorption characteristics of Cs+ on biogenic birnessite. Appl Clay Sci 101:23–29

    CAS  Google Scholar 

  • Shaheen SM, Natasha Mosa A, El-Naggar A, Faysal Hossain M, Abdelrahman H, Khan Niazi N, Shahid M, Zhang T, Fai Tsang Y, Trakal L, Wang S, Rinklebe J (2022) Manganese oxide-modified biochar: production, characterization and applications for the removal of pollutants from aqueous environments - a review. Bioresource Technol 346:126581

    CAS  Google Scholar 

  • Shan C, Tong M (2013) Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe–Mn binary oxide. Water Res 47:3411–3421

    CAS  Google Scholar 

  • Shao Y, Fan J, Li J, Yang J, Wang Y, Ruan H, Liu Z, Li H, Long Y, Hu J (2022) Removal of elemental mercury from coal combustion flue gas using recyclable Dy modified Mn-Fe mixed oxide nanoparticles. J Environ Chem Eng 10:108493

    CAS  Google Scholar 

  • Sherman DM, Peacock CL (2010) Surface complexation of Cu on birnessite (δ-MnO2): Controls on Cu in the deep ocean. Geochim Cosmochim Acta 74:6721–6730

    CAS  Google Scholar 

  • Shi Y, Xing Y, Song Z, Dang X, Zhao H (2022) Adsorption performance and its mechanism of aqueous As(III) on polyporous calcined oyster shell-supported Fe-Mn binary oxide. Water Environ Res 94:10714

    Google Scholar 

  • Son BHD, Mai VQ, Du DX, Phong NH, Cuong ND, Khieu DQ (2017) Catalytic wet peroxide oxidation of phenol solution over Fe–Mn binary oxides diatomite composite. J Porous Mat 24:601–611

    CAS  Google Scholar 

  • Sotiles A, Gomez N, Da Silva S, Wypych F (2019) Layered Double Hydroxides with the Composition Mn/Al-SO4-A (A = Li, Na, K; Mn: Al ca. 1:1) as Cation Exchangers. J Brazil Chem Soc 30:1807–1813

    CAS  Google Scholar 

  • Spinks SC, Uvarova Y, Thorne R, Anand R, Reid N, White A, Ley-Cooper Y, Bardwell N, Gray D, Meadows H, LeGras M (2017) Detection of zinc deposits using terrestrial ferromanganese crusts. Ore Geol Rev 80:484–503

    Google Scholar 

  • Sun B, Guan X, Fang J, Tratnyek PG (2015) Activation of Manganese Oxidants with Bisulfite for Enhanced Oxidation of Organic Contaminants: The Involvement of Mn(III). Environ Sci Technol 49:12414–12421

    CAS  Google Scholar 

  • Sun Q, Cui P, Fan T, Wu S, Zhu M, Alves ME, Zhou D, Wang Y (2018) Effects of Fe(II) on Cd(II) immobilization by Mn(III)-rich δ-MnO2. Chem Eng J 353:167–175

    CAS  Google Scholar 

  • Sun Q, Cui P, Zhu M, Fan T, Ata-Ul-Karim ST, Gu J, Wu S, Zhou D, Wang Y (2019) Cd(II) retention and remobilization on δ-MnO2 and Mn(III)-rich δ-MnO2 affected by Mn(II). Environ Int 130:104932

    CAS  Google Scholar 

  • Suttle NF, Bell J, Thornton I, Agyriaki A (2003) Predicting the risk of cobalt deprivation in grazing livestock from soil composition data. Environ Geochem Hlth 25:33–39

    CAS  Google Scholar 

  • Tajima S, Fuchida S, Tokoro C (2022) Coprecipitation mechanisms of Zn by birnessite formation and its mineralogy under neutral pH conditions. J Environ Sci-China 121:136–147

    Google Scholar 

  • Tang W, Li W, Li D, Liu G, Wu X, Chen Y (2014) Synergistic Effects in Porous Mn–Co Mixed Oxide Nanorods Enhance Catalytic Deep Oxidation of Benzene. Catal Lett 144:1900–1910

    CAS  Google Scholar 

  • Tarjomannejad A, Farzi A, Niaei A, Salari D (2017) NO reduction by CO over LaB0.5B′0.5O3 (B = Fe, Mn, B′=Fe, Mn Co, Cu) perovskite catalysts, an experimental and kinetic study. J Taiwan Inst Chem E 78:200–211

    CAS  Google Scholar 

  • Timár Z, Varga G, Muráth S, Kónya Z, Kukovecz Á, Havasi V, Oszkó A, Pálinkó I, Sipos P (2017) Synthesis, characterization and photocatalytic activity of crystalline Mn(II)Cr(III)-layered double hydroxide. Catal Today 284:195–201

    Google Scholar 

  • Todorova S, Naydenov A, Kolev H, Tenchev K, Ivanov G, Kadinov G (2011) Effect of Co and Ce on silica supported manganese catalysts in the reactions of complete oxidation of n-hexane and ethyl acetate. J Mater Sci 46:7152–7159

    CAS  Google Scholar 

  • Toner B, Manceau A, Webb SM, Sposito G (2006) Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochim Cosmochim Acta 70:27–43

    CAS  Google Scholar 

  • Verma M, Kumar A, Singh KP, Kumar R, Kumar V, Srivastava CM, Rawat V, Rao G, Kumari S, Sharma P, Kim H (2020) Graphene oxide-manganese ferrite (GO-MnFe2O4) nanocomposite: One-pot hydrothermal synthesis and its use for adsorptive removal of Pb2+ ions from aqueous medium. J Mol Liq 315:113769

    CAS  Google Scholar 

  • Villalobos M, Escobar-Quiroz IN, Salazar-Camacho C (2014) The influence of particle size and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of As(V) and oxidation of As(III). Geochim Cosmochim Acta 125:564–581

    CAS  Google Scholar 

  • Wan W, Xing Y, Qin X, Li X, Liu S, Luo X, Huang Q, Chen W (2020) A manganese-oxidizing bacterial consortium and its biogenic Mn oxides for dye decolorization and heavy metal adsorption. Chemosphere 253:126627

    CAS  Google Scholar 

  • Wang Y, Feng X, Villalobos M, Tan W, Liu F (2012) Sorption behavior of metals on birnessite: Relationship with its Mn average oxidation state and implications for types of sorption sites. Chem Geol 292–293:25–34

    Google Scholar 

  • Wang Q, Yang P, Zhu M (2018) Structural transformation of birnessite by fulvic acid under anoxic conditions. Environ Sci Technol 52:1844–1853

    CAS  Google Scholar 

  • Wang B, Zou J, Shen X, Yang Y, Hu G, Li W, Peng Z, Banham D, Dong A, Zhao D (2019a) Nanocrystal supracrystal-derived atomically dispersed Mn-Fe catalysts with enhanced oxygen reduction activity. Nano Energy 63:103851

    CAS  Google Scholar 

  • Wang Q, Yang P, Zhu M (2019b) Effects of metal cations on coupled birnessite structural transformation and natural organic matter adsorption and oxidation. Geochim Cosmochim Acta 250:292–310

    CAS  Google Scholar 

  • Wang Y, Yang Y, Jia S, Wang X, Lyu K, Peng Y, Zheng H, Wei X, Ren H, Xiao L, Wang J, Muller DA, Abruña HD, Hwang BJ, Lu J, Zhuang L (2019c) Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nat Commun 10:1–18

    Google Scholar 

  • Wang W, Ren J, Wang C, Zheng M, Ma Y, Yin X, Ding J, Hou C, Li T (2022) Magnetic Fe3O4/polypyrrole-salicylaldehyde composite for efficient removal of Mn (VII) from aqueous solution by double-layer adsorption. J Appl Polym Sci 139:52515

    Google Scholar 

  • Wang F, Yuan L, Song J, Zeng W, Wang Q, Zhi J, Jiu P (2016) On Characteristics of Isothermal Adsorption of Cd2+ to Fe-Mn Bimetal Oxide and Its Influencing Factors. Journal of Southwest China Normal University(Natural Science Edition) 41:42–49

  • Watanabe J, Tani Y, Miyata N, Seyama H, Mitsunobu S, Naitou H (2012) Concurrent sorption of As(V) and Mn(II) during biogenic manganese oxide formation. Chem Geol 306–307:123–128

    Google Scholar 

  • Wegorzewski AV, Kuhn T, Dohrmann R, Wirth R, Grangeon S (2015) Mineralogical characterization of individual growth structures of Mn-nodules with different Ni+Cu content from the central Pacific Ocean. Am Mineral 100:2497–2508

    Google Scholar 

  • Wu F, Owens JD, Tang L, Dong Y, Huang F (2019a) Vanadium isotopic fractionation during the formation of marine ferromanganese crusts and nodules. Geochim Cosmochim Acta 265:371–385

    CAS  Google Scholar 

  • Wu K, Si X, Jiang J, Si Y, Sun K, Yousaf A (2019b) Enhanced degradation of sulfamethoxazole by Fe–Mn binary oxide synergetic mediated radical reactions. Environ Sci Pollut R 26:14350–14361

    CAS  Google Scholar 

  • Wu Z, Peacock CL, Lanson B, Yin H, Zheng L, Chen Z, Tan W, Qiu G, Liu F, Feng X (2019c) Transformation of Co-containing birnessite to todorokite: Effect of Co on the transformation and implications for Co mobility. Geochim Cosmochim Acta 246:21–40

    CAS  Google Scholar 

  • Wu Z, Lanson B, Feng X, Yin H, Qin Z, Wang X, Tan W, Chen Z, Wen W, Liu F (2020) Transformation of Ni-containing birnessite to tectomanganate: Influence and fate of weakly bound Ni(II) species. Geochim Cosmochim Acta 271:96–115

    CAS  Google Scholar 

  • Wu P, Cui P, Zhang Y, Alves ME, Liu C, Zhou D, Wang Y (2022) Unraveling the molecular mechanisms of Cd sorption onto MnOx-loaded biochar produced from the Mn-hyperaccumulator Phytolacca americana. J Hazard Mater 423:127157

    CAS  Google Scholar 

  • Xu W, Wang H, Liu R, Zhao X, Qu J (2011) The mechanism of antimony(III) removal and its reactions on the surfaces of Fe–Mn Binary Oxide. J Colloid Interf Sci 363:320–326

    CAS  Google Scholar 

  • Xu H, Qu Z, Zong C, Quan F, Mei J, Yan N (2016) Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas. Appl Catal B-Environ 186:30–40

    CAS  Google Scholar 

  • Xu R, Li Q, Liao L, Wu Z, Yin Z, Yang Y, Jiang T (2022a) Simultaneous and efficient removal of multiple heavy metal(loid)s from aqueous solutions using Fe/Mn (hydr)oxide and phosphate mineral composites synthesized by regulating the proportion of Fe(II), Fe(III), Mn(II) and PO43–. J Hazard Mater 438:129481

    CAS  Google Scholar 

  • Xu R, Li Q, Nan X, Jiang G, Wang L, Xiong J, Yang Y, Xu B, Jiang T (2022b) Simultaneous removal of antimony(III/V) and arsenic(III/V) from aqueous solution by bacteria–mediated kaolin@Fe-Mn binary (hydr)oxides composites. Appl Clay Sci 217:106392

    CAS  Google Scholar 

  • Yang J, Wang J, Zhu L, Gao Q, Zeng W, Wang J, Li Y (2018a) Enhanced electrocatalytic activity of a hierarchical CeO2@MnO2 core-shell composite for oxygen reduction reaction. Ceram Int 44:23073–23079

    CAS  Google Scholar 

  • Yang K, Zhou J, Lou Z, Zhou X, Liu Y, Li Y, Ali Baig S, Xu X (2018b) Removal of Sb(V) from aqueous solutions using Fe-Mn binary oxides: The influence of iron oxides forms and the role of manganese oxides. Chem Eng J 354:577–588

    CAS  Google Scholar 

  • Yang X, Liu L, Tan W, Qiu G, Liu F (2018c) High-performance Cu2+ adsorption of birnessite using electrochemically controlled redox reactions. J Hazard Mater 354:107–115

    CAS  Google Scholar 

  • Yang Y, Li Y, Zeng M, Mao M, Lan L, Liu H, Chen J, Zhao X (2018d) UV–vis-infrared light-driven photothermocatalytic abatement of CO on Cu doped ramsdellite MnO2 nanosheets enhanced by a photoactivation effect. Appl Catal B-Environ 224:751–760

    CAS  Google Scholar 

  • Yang M, Shen G, Liu M, Chen Y, Wang Z, Wang Q (2019a) Preparation of Ce–Mn Composite Oxides with Enhanced Catalytic Activity for Removal of Benzene through Oxalate Method. Nanomaterials-Basel 9:197

    CAS  Google Scholar 

  • Yang P, Post JE, Wang Q, Xu W, Geiss R, McCurdy PR, Zhu M (2019b) Metal adsorption controls stability of layered manganese oxides. Environ Sci Technol 53:7453–7462

    CAS  Google Scholar 

  • Yang X, Peng Q, Liu L, Tan W, Dang Z (2020) Synergistic adsorption of Cd(II) and As(V) on birnessite under electrochemical control. Chemosphere 247:125822

    CAS  Google Scholar 

  • Yang R, Fan Y, Ye R, Tang Y, Cao X, Yin Z, Zeng Z (2021) MnO2-Based Materials for Environmental Applications. Adv Mater 33:2004862

    CAS  Google Scholar 

  • Yang T, Xu Y, Huang Q, Sun Y, Liang X, Wang L (2022) Removal mechanisms of Cd from water and soil using Fe-Mn oxides modified biochar. Environ Res 212:113406

    CAS  Google Scholar 

  • Yin H, Feng X, Qiu G, Tan W, Liu F (2011a) Characterization of Co-doped birnessites and application for removal of lead and arsenite. J Hazard Mater 188:341–349

    CAS  Google Scholar 

  • Yin H, Liu F, Feng X, Liu M, Tan W, Qiu G (2011b) Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As(III). J Hazard Mater 196:318–326

    CAS  Google Scholar 

  • Yin H, Tan W, Zheng L, Cui H, Qiu G, Liu F, Feng X (2012) Characterization of Ni-rich hexagonal birnessite and its geochemical effects on aqueous Pb2+/Zn2+ and As(III). Geochim Cosmochim Acta 93:47–62

    CAS  Google Scholar 

  • Yin H, Liu F, Feng X, Hu T, Zheng L, Qiu G, Koopal LK, Tan W (2013) Effects of Fe doping on the structures and properties of hexagonal birnessites comparison with Co and Ni doping. Geochim Cosmochim Acta 117:1–15

    CAS  Google Scholar 

  • Yin H, Li H, Wang Y, Ginder-Vogel M, Qiu G, Feng X, Zheng L, Liu F (2014) Effects of Co and Ni co-doping on the structure and reactivity of hexagonal birnessite. Chem Geol 381:10–20

    CAS  Google Scholar 

  • Yin H, Feng X, Tan W, Koopal LK, Hu T, Zhu M, Liu F (2015) Structure and properties of vanadium(V)-doped hexagonal turbostratic birnessite and its enhanced scavenging of Pb2+ from solutions. J Hazard Mater 288:80–88

    CAS  Google Scholar 

  • Yin H, Wang X, Qin Z, Ginder-Vogel M, Zhang S, Jiang S, Liu F, Li S, Zhang J, Wang Y (2018) Coordination geometry of Zn2+ on hexagonal turbostratic birnessites with different Mn average oxidation states and its stability under acid dissolution. J Environ Sci-China 65:282–292

    CAS  Google Scholar 

  • Yin H, Sun J, Yan X, Yang X, Feng X, Tan W, Qiu G, Zhang J, Ginder-Vogel M, Liu F (2020) Effects of Co(II) ion exchange, Ni(II)- and V(V)-doping on the transformation behaviors of Cr(III) on hexagonal turbostratic birnessite-water interfaces. Environ Pollut 256:113462

    CAS  Google Scholar 

  • You Y, Liang Y, Peng S, Lan S, Lu G, Feng X, Shi Z (2020) Modeling coupled kinetics of arsenic adsorption/desorption and oxidation in ferrihydrite-Mn(II)/manganese (oxyhydr) oxides systems. Chemosphere 244:125517

    CAS  Google Scholar 

  • Yu C, Drake H, Mathurin FA, Åström ME (2017a) Cerium sequestration and accumulation in fractured crystalline bedrock: The role of Mn-Fe (hydr-)oxides and clay minerals. Geochim Cosmochim Acta 199:370–389

    CAS  Google Scholar 

  • Yu Q, Ohnuki T, Kozai N, Sakamoto F, Tanaka K, Sasaki K (2017b) Quantitative analysis of radiocesium retention onto birnessite and todorokite. Chem Geol 470:141–151

    CAS  Google Scholar 

  • Zhang L, Wu Y (2013) Sol-Gel synthesized magnetic MnFe2O4 spinel ferrite nanoparticles as novel catalyst for oxidative degradation of methyl orange. J Nanomater 2013:1–6

    Google Scholar 

  • Zhang G, Qu J, Liu H, Liu R, Li G (2007) Removal mechanism of As(III) by a novel Fe−Mn binary oxide adsorbent: Oxidation and sorption. Environ Sci Technol 41:4613–4619

    CAS  Google Scholar 

  • Zhang G, Liu H, Qu J, Jefferson W (2012) Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe–Mn binary oxides: Influence of Mn/Fe ratio, pH, Ca2+, and humic acid. J Colloid Interf Sci 366:141–146

    CAS  Google Scholar 

  • Zhang Z, Yin H, Tan W, Koopal LK, Zheng L, Feng X, Liu F (2014) Zn sorption to biogenic bixbyite-like Mn2O3 produced by Bacillus CUA isolated from soil: XAFS study with constraints on sorption mechanism. Chem Geol 389:82–90

    CAS  Google Scholar 

  • Zhang T, Wang J, Zhang W, Yang C, Zhang L, Zhu W, Sun J, Li G, Li T, Wang J (2019) Amorphous Fe/Mn bimetal–organic frameworks: Outer and inner structural designs for efficient arsenic(III) removal. J Mater Chem a 7:2845–2854

    CAS  Google Scholar 

  • Zhang M, Li W, Wu X, Zhao F, Wang D, Zha X, Li S, Liu H, Chen Y (2020) Low-temperature catalytic oxidation of benzene over nanocrystalline Cu–Mn composite oxides by facile sol–gel synthesis. New J Chem 44:2442–2451

    CAS  Google Scholar 

  • Zhang L, Yang Y, Xu X, Xiao H, Deng S, Han X, Xia F, Jiang Y (2022) Enhanced performance of thallium(I) removal by in situ-generated manganese oxides during biogenic Mn(II) oxidation. Sep Purif Technol 300:121821

    CAS  Google Scholar 

  • Zhao W, Feng X, Tan W, Liu F, Ding S (2009) Relation of lead adsorption on birnessites with different average oxidation states of manganese and release of Mn2+/H+/K+. J Environ Sci (china) 21:520–526

    CAS  Google Scholar 

  • Zhao H, Zhu M, Li W, Elzinga EJ, Villalobos M, Liu F, Zhang J, Feng X, Sparks DL (2016) Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry. Environ Sci Technol 50:1750–1758

    CAS  Google Scholar 

  • Zhao X, Niu C, Zhang L, Guo H, Wen X, Liang C, Zeng G (2018) Co-Mn layered double hydroxide as an effective heterogeneous catalyst for degradation of organic dyes by activation of peroxymonosulfate. Chemosphere 204:11–21

    CAS  Google Scholar 

  • Zhao Z, Du H, Shen B, Gao P, Huang C, Guo S (2022) A composite photocatalytic system based on spent alkaline Zn-Mn batteries for toluene removal under multiple conditions. Environ Res 212:113300

    CAS  Google Scholar 

  • Zheng Q, Hou J, Hartley W, Ren L, Wang M, Tu S, Tan W (2020) As(III) adsorption on Fe-Mn binary oxides: Are Fe and Mn oxides synergistic or antagonistic for arsenic removal? Chem Eng J 389:124470

    CAS  Google Scholar 

  • Zhong LB, Yin J, Liu SG, Liu Q, Yang YS, Zheng YM (2016) Facile one-pot synthesis of urchin-like Fe-Mn binary oxide nanoparticles for effective adsorption of Cd(II) from water. Rsc Adv 6:103438–103445

    CAS  Google Scholar 

  • Zhou H, Jiang Z, Wei S, Liang J (2018) Adsorption of Cd(II) from Aqueous Solutions by a Novel Layered Double Hydroxide FeMnMg-LDH. Water Air Soil Pollut 229:78.1-78.16

    Google Scholar 

  • Zhou Q, Sun H, Jia L, Wu W, Wang J (2022) Simultaneous biological removal of nitrogen and phosphorus from secondary effluent of wastewater treatment plants by advanced treatment: A review. Chemosphere 296:134054

    CAS  Google Scholar 

  • Zhu M, Ginder-Vogel M, Parikh SJ, Feng X, Sparks DL (2010a) Cation effects on the layer structure of biogenic Mn-Oxides. Environ Sci Technol 44:4465–4471

    CAS  Google Scholar 

  • Zhu M, Ginder-Vogel M, Sparks DL (2010b) Ni(II) Sorption on Biogenic Mn-Oxides with Varying Mn Octahedral Layer Structure. Environ Sci Technol 44:4472–4478

    CAS  Google Scholar 

  • Zhu L, Wang J, Rong S, Wang H, Zhang P (2017) Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature. Appl Catal B-Environ 211:212–221

    CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate financial support from the National Natural Science Foundation of China (Grant Nos. 42207254, 41972037, 42172042), the Basic and Applied Basic Research Foundation of Guangdong Province (2021A1515110371, 2019B1515120015), Guangdong Special Support Program for Local Innovative and Research Teams Project (2019BT02L218), the Guangzhou Science and Technology Program (202206010055), the Guangdong Science and Technology Program (2020B121201003), and China postdoctoral science foundation (2022M711191).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. References collection and analysis were performed by Meiqing Chen, Jiayan Wu, Xiaoshan Qiu and Jiang Lu. The first draft of the manuscript was written by Meiqing Chen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Meiqing Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Ioannis A. Katsoyiannis

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wu, J., Qiu, X. et al. The important role of the interaction between manganese minerals and metals in environmental remediation: a review. Environ Sci Pollut Res 30, 39319–39337 (2023). https://doi.org/10.1007/s11356-023-25575-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-25575-8

Keywords

Navigation