Skip to main content
Log in

Biotransformation of grease waste into fatty acid by Penicillium chrysogenum SNP5 through media engineering and artificial neural network

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Degradation of grease waste remains a challenging task. Current work deals with the biotransformation of grease waste into fatty acids under submerged fermentation using Penicillium chrysogenum SNP5 through media formulation and artificial neural network (ANN). Fermentation media was formulated to ameliorate the uptake of hydrocarbon by enhancing alkane hydroxylase (AlkB) activity, extracellular release of fatty acids and inhibiting beta-oxidation of fatty acid by regulating transketolase. Further, the process parameters of fermentation were optimized through Artificial Neural Network (ANN) using three critical variables viz; inoculum size (spores/ml), pH, and incubation time (days) while media engineering was done with the optimal supplementation of various medium components such as glucose, YPD, MnSO4, tetrahydrobiopterin (THB) and phloretin. The maximum conversion of 66.5% of grease waste into fatty acid was achieved at optimum conditions: inoculums size 3.36 × 107 spores/ml, incubation time 11.5 days, pH 7.2 along with formulated media composed of 1% grease in czapek-dox medium supplemented with 55.5 mM glucose, 0.5% YPD, 16.6 mM hexadecane, 1 mM MnSO4, 1 mM THB, and 1 mM phloretin. The presence of long-chain fatty acids in purified extracts such as oleic acid and octadecanoic acid as end products has valued the evolved process as another source of alternative fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

Download references

Funding

The authors are grateful to DBT, Ministry of Science & Technology, Government of India for providing financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Lab experiments were mainly conducted by Satyapriy Das and Farhan Anjum. The design and concept were mainly conceived by Sangeeta Negi and Sunil Khare. The manuscript has been written and edited by Satyapriy Das and Sangeeta Negi. All authors read and approved the final manuscript and have no conflict of interest.

Corresponding author

Correspondence to Sangeeta Negi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ta Yeong Wu

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, S., Anjum, F., Khare, S. et al. Biotransformation of grease waste into fatty acid by Penicillium chrysogenum SNP5 through media engineering and artificial neural network. Environ Sci Pollut Res 30, 39653–39665 (2023). https://doi.org/10.1007/s11356-022-24990-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-24990-7

Keywords

Navigation