Skip to main content

Advertisement

Log in

Distribution, sources, and pollution levels of toxic metal(loid)s in an urban river (Ichamati), Bangladesh using SOM and PMF modeling with GIS tool

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Indexical assessment coupled with a self-organizing map (SOM) and positive matrix factorization (PMF) modeling of toxic metal(loid)s in sediment and water of the aquatic environment provides valuable information from the environmental management perspective. However, in northwest Bangladesh, indexical and modeling assessments of toxic metal(loid)s in surface water and sediment are still rare. Toxic metal(loid)s were measured in sediment and surface water from an urban polluted river (Ichamati) in northwest Bangladesh using an atomic absorption spectrophotometer to assess distribution, pollution levels, sources, and potential environmental risks to the aquatic environment. The mean concentrations (mg/kg) of metal(loid)s in water are as follows: Fe (871) > Mn (382) > Cr (72.4) > Zn (34.2) > Co (20.8) > Pb (17.6) > Ni (16.7) > Ag (14.9) > As (9.0) > Cu (5.63) > Cd (2.65), while in sediment, the concentration follows the order, Fe (18,725) > Mn (551) > Zn (213) > Cu (47.6) > Cr (30.2) > Ni (24.2) > Pb (23.8) > Co (9.61) > As (8.23) > Cd (0.80) > Ag (0.60). All metal concentrations were within standard guideline values except for Cr and Pb for water and Cd, Zn, Cu, Pb, and As for sediment. The outcomes of eco-environmental indices, including contamination and enrichment factors and geo-accumulation index, differed spatially, indicating that most of the sediment sites were moderately to highly polluted by Cd, Zn, and As. Cd and Zn content can trigger ecological risks. The positive matrix factorization (PMF) model recognized three probable sources of sediment, i.e., natural source (49.39%), industrial pollution (19.72%), and agricultural source (30.92%), and three possible sources of water, i.e., geogenic source (45.41%), industrial pollution (22.88%), and industrial point source (31.72%), respectively. SOM analysis identified four spatial patterns, e.g., Fe–Mn-Ag, Cd–Cu, Cr-Pb-As-Ni, and Zn–Co in water and three patterns, e.g., Mn-Co–Ni-Cr, Cd-Cu-Pb–Zn, and As-Fe-Ag in sediment. The spatial distribution of entropy water quality index values shows that the southwestern area possesses “poor” quality water. Overall, the levels of metal(loid) pollution in the investigated river surpassed a critical threshold, which might have serious consequences for the river’s aquatic biota and human health in the long run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data are available upon request on the corresponding author.

Code availability

Not applicable.

References

  • Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136(1–3):227–238. https://doi.org/10.1007/s10661-007-9678-2

    Article  CAS  Google Scholar 

  • Ahmed FT, Khan AHAN, Khan R, Saha SK, Alam FA, Dafader NC, Sultana S, Elius IB, Mamun SA (2021) Characterization of arsenic contaminated groundwater from central Bangladesh: irrigation feasibility and preliminary health risks assessment. Environ Nanotechnol Monit Manag 14:100433. https://doi.org/10.1016/j.enmm.2021.100433

    Article  CAS  Google Scholar 

  • Akinci G, Guven DE, Ugurlu SK (2013) Assessing pollution in Izmir Bay from rivers in western Turkey: heavy metals. Environ Sci Process Impacts 15(12):2252–2262

    Article  CAS  Google Scholar 

  • Ali MM et al (2016) Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ Nanotechnol Monit Manag 5:27–35

    Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. https://doi.org/10.1155/2019/6730305

    Article  Google Scholar 

  • Alqurashi AF, Kumar L (2019) An assessment of the impact of urbanization and land use changes in the fast-growing cities of Saudi Arabia. Geocarto Int. https://doi.org/10.1080/10106049.2017.1367423

    Article  Google Scholar 

  • Angel BM, Batley GE, Jarolimek CV, Rogers NJ (2013) The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 93. https://doi.org/10.1016/j.chemosphere.2013.04.096

  • APHA (2005) Standard methods for the examination of water and wastewater, 20th edn. APHA, AWWA and WEF, Washington DC

  • APHA (American Public Health Association) (2005) Standard methods for examination of water and wastewater 21st edn. APHA, AWWA, WPCF, Washington

  • Bastami KD, Bagheri H, Kheirabadi V (2014) Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea. Mar Pollut Bull 81:262–267

    Article  CAS  Google Scholar 

  • BBS (Bangladesh Bureau of Statistics) (2011) Yearbook of agricultural statistics of Bangladesh, 2012. Bangladesh Bureau of Statistics, Dhaka, accessed 11 Jan 2021

  • Berrada M, El Hmaidi A, Monyr N, Abrid D, Abdallaoui A, Essahlaoui A, El Ouali A (2016) Self-organizing map for the detection of seasonal variations in Sidi Chahed Dam sediments (Northern Morocco). Hydrol Sci J 61(3):628–635. https://doi.org/10.1080/02626667.2014.964717

    Article  CAS  Google Scholar 

  • Bodrud-Doza M, Islam ARMT, Ahmed F, Das S, Saha N, Rahman MS (2016) Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Sci 30:19–40. https://doi.org/10.1016/j.wsj

    Article  Google Scholar 

  • Bourennane H, Douay F, Sterckeman T, Villanneau E, Ciesielski H, King D, Baize D (2010) Mapping of anthropogenic trace elements inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma. https://doi.org/10.1016/j.geoderma.2010.04.009

    Article  Google Scholar 

  • Chai N, Yi X, Xiao J, Liu T, Liu Y, Deng L, Jin Z (2021) Spatiotemporal variations, sources, water quality and health risk assessment of trace elements in the Fen River. Sci Total Environ 757:143882

    Article  CAS  Google Scholar 

  • Chen R, Zhang Q, Chen H, Yue W, Teng Y (2021) Source apportionment of heavy metals in sediments and soils in an interconnected river-soil system based on a composite fingerprint screening approach. J Hazard Mater 411:125125

  • Dash S, Borah SS, Kalamdhad AS (2020) Application of positive matrix factorization receptor model and elemental analysis for the assessment of sediment contamination and their source apportionment of Deepor Beel Assam India. Ecol Indic 114:106291

  • Dash S, Borah SS, Kalamdhad AS (2021) Heavy metal pollution and potential ecological risk assessment for surficial sediments of Deepor Beel, India. Ecol Indic 122:107265

    Article  CAS  Google Scholar 

  • DoE (Department of Environment) (DoE) (1997) Government of the people’s Republic of Bangladesh. The environment conservation Rules poribesh Bhaban E-16 Agargaon Shere Bangla Nagar Dhaka 1207 Bangladesh. accessed 12 Jan 2021

  • Duman F, Aksoy A, Demirezen D (2007) Seasonal variability of heavy metals in surface sediment of Lake Sapanca, Turkey. Environ Monit Assess. https://doi.org/10.1007/s10661-006-9580-3

    Article  Google Scholar 

  • Edet AE, Offiong OE (2002) Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, lower Cross River Basin (southeastern Nigeria). GeoJournal 5:295–304

    Article  Google Scholar 

  • El-Sayed SM, Hegab MH, Mola HR, Ahmed NM, Goher ME (2020) An integrated water quality assessment of Damietta and Rosetta branches (Nile River, Egypt) using chemical and biological indices. Environ Monit Assess 192(4):1–16. https://doi.org/10.1007/s10661-020-8195-4

  • Emenike PC, Tenebe IT, Neris JB, Omole DO, Afolayan O, Okeke CU, Emenike IK (2020) An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara. Nig Environ Pollut 265:114795. https://doi.org/10.1016/j.envpol.2020.114795

    Article  CAS  Google Scholar 

  • Fabunmi I, Kunbi F, Paul UJ, Samuel P, Opeyemi O, Chidinma N (2015) On the physico-chemistry and nutrient profile in the Lagos harbor. J Sci Res Rep 8(4):1–13

    Google Scholar 

  • Fu J, Zhao C, Luo Y, Liu C, Kyzas GZ, Luo Y, Zhao D, An S, Zhu H (2014) Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. J Hazard Mater 270:102–109

    Article  CAS  Google Scholar 

  • Gu Q, Hu H, Ma L, Sheng L, Yang S et al (2019) Characterizing the spatial variations of the relationship between land use and surface water quality using self-organizing map approach. Ecol Ind. https://doi.org/10.1016/j.ecolind.2019.03.017

    Article  Google Scholar 

  • Guan J, Wang J, Pan H, Yang C, Qu J, Lu N, Yuan X (2018) Heavy metals in Yinma River sediment in a major Phaeozems zone, Northeast China: distribution, chemical fraction, contamination assessment and source apportionment. Sci Rep 8(1):12231. https://doi.org/10.1038/s41598-018-30197-z

    Article  CAS  Google Scholar 

  • Hakonde T, Yabe J, Choongo K, Chongwe G, Islam MS (2020) Preliminary assessment of uranium contamination in drinking water sources near a uranium mine in the Siavonga district, Zambia, and associated health risks. J Mine Water Environ 39:735–745

    Article  Google Scholar 

  • Habib MA, Islam ARMT, Bodrud-Doza M, Mukta FA, Khan R, Siddique MAB, Phoungthong K, Techato K (2020) Simultaneous appraisals of pathway and probable health risk associated with trace metals contamination in groundwater from Barapukuria coal basin, Bangladesh. Chemosph 242:125183. https://doi.org/10.1016/j.chemosphere.2019.125183

    Article  CAS  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control- a sedimentological approach. Water Res 14(8):975–1001

    Article  Google Scholar 

  • Han LF, Gao B, Zhou HD, Xu DY, Wei X, Gao L (2015) The spatial distribution, accumulation and potential source of seldom monitored trace elements in sediments of Three Gorges Reservoir, China. Sci Rep 5:16170–16180

    Article  CAS  Google Scholar 

  • Hoang HG, Lin C, Tran HT, Chiang CF, Bui XT, Cheruiyot NK, Shern CC, Lee CW (2020) Heavy metal contamination trends in surface water and sediments of a river in a highly-industrialized region. Environ Technol Innov 20:101043

    Article  CAS  Google Scholar 

  • Hopke PK (ed) (2003) Receptor modeling for air quality management. Elsevier Science, Amsterdam

    Google Scholar 

  • Hossain MB, Shanta TB, Ahmed AS, Hossain MK, Semme SA (2019) Baseline study of heavy metal contamination in the Sangu River estuary, Chattogram, Bangladesh. Marine pollution bulletin 140:255–261. https://doi.org/10.1016/j.marpolbul.2019.01.058

    Article  CAS  Google Scholar 

  • Hu C, Deng ZM, Xie YH, Chen XS, Li F (2015) The risk assessment of sediment heavy metal pollution in the East Dongting Lake Wetland. J Chem. https://doi.org/10.1155/2015/835487

    Article  Google Scholar 

  • Hu W, Wang H, Dong L, Huang B, Borggaard OK, Bruun Hansen HC, He Y, Holm PE (2018) Source identification of heavy metals in peri-urban agricultural soils of southeast China: an integrated approach. Environ Pollut. https://doi.org/10.1016/j.envpol.2018.02.070

    Article  Google Scholar 

  • Islam MS, Ahmed MK, Al-Mamun MH, Hoque MF (2015a) Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environ Earth Sci 73:1837–1848

    Article  CAS  Google Scholar 

  • Islam MS, Ahmed MK, Raknuzzaman M, Al-Mamun MH, Islam MK (2015b) Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol Indic 48:282–291

    Article  CAS  Google Scholar 

  • Islam MS (2021) Preliminary assessment of trace elements in surface and deep waters of an urban river (Korotoa) in Bangladesh and associated health risk. Environ Sci Pollut Res 28:29287–29303. https://doi.org/10.1007/s11356-021-12541-5

    Article  Google Scholar 

  • Islam ARMT, Ahmed N, Bodrud-Doza M, Chu R (2017) Characterizing groundwater quality ranks for drinking purposes in Sylhet district, Bangladesh, using entropy method, spatial autocorrelation index, and geostatistics. Environ Sci Pollut Control Ser 24(34):26350–26374. https://doi.org/10.1007/s11356-017-0254-1

    Article  CAS  Google Scholar 

  • Islam MS, Proshad R, Ahmed S (2018) Ecological risk of heavy metals in sediment of an urban river in Bangladesh. Hum Ecol Risk Assess 24(3):699–720

    Article  CAS  Google Scholar 

  • Islam ARMT, Islam HMT, Mia MU, Khan R, Habib MA, Bodrud-Doza M, Siddique MAB, Chu R (2020a) Co-distribution, possible origins, status and potential health risk of trace elements in surface water sources from six major river basin, Bangladesh. Chemosphere 249:126180

    Article  CAS  Google Scholar 

  • Islam ARMT, Hasanuzzaman M, Islam HMT et al (2020b) Quantifying source apportionment, co-occurrence and ecotoxicological risk of metals from up-middownstream river segments, Bangladesh. Environ Toxicol Chem 39:2041–2054. https://doi.org/10.1002/etc.4814

    Article  CAS  Google Scholar 

  • Islam MS, Idris AM, Islam ARMT, Ali MM, Rakib MRJ (2021) Hydrological distribution of physicochemical parameters and heavy metals in surface water and their ecotoxicological implications in the Bay of Bengal coast of Bangladesh. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-15353-9

    Article  Google Scholar 

  • Islam ARMT, Pal SC, Chakraborty R, Idris AM, Salam R, Islam MS, Shahid S, Zahid A, Ismail ZB (2022) A coupled novel framework for assessing vulnerability of water resources using hydrochemical analysis and data-driven models. J Clean Prod 336(6):130407. https://doi.org/10.1016/j.jclepro.2022.130407

    Article  CAS  Google Scholar 

  • Isokääntä S, Kari E, Buchholz A, Hao L, Schobesberger S, Virtanen A, Mikkonen S (2019) Comparison of dimension reduction techniques in the analysis of mass spectrometry data. Atmos Meas Tech Discuss. https://doi.org/10.5194/amt-2019-404

    Article  Google Scholar 

  • Javadi S, Hashemy SM, Mohammadi K, Howard KWF, Neshat A (2017) Classification of aquifer vulnerability using K-means cluster analysis. J Hydrol. https://doi.org/10.1016/j.jhydrol.2017.03.060

    Article  Google Scholar 

  • Jiang HH, Cai LM, Wen HH, Hu GC, Chen LG, Luo J (2020) An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci Total Environ 701:134466

    Article  CAS  Google Scholar 

  • Jiang Y, Gui H, Chen C, Wang C et al (2021) The characteristics and source analysis of heavy metals in the sediment of water area of urban scenic: a case study of the Delta Park in Suzhou City, Anhui Province, China. Pol J Environ Stud 30(3):2127–2136

    Article  CAS  Google Scholar 

  • Jigyasu DK, Singh M, Singh S, Singh S, Singh IB (2020) Trace element mobility, regional significance and global implication of Gomati river basin, northern India. SN Appl Sci 2(8):1–13

    Article  Google Scholar 

  • Kabir MH, Islam MS, Hoq ME, Tusher TR, Islam MS (2020) Appraisal of heavy metal contamination in sediments of the Shitalakhya River in Bangladesh using pollution indices, geo-spatial and multivariate statistical analysis. Arab J Geo Sci. https://doi.org/10.1007/s12517-020-06072-5

    Article  Google Scholar 

  • Kabir MM, Akter S, Ahmed FT, Mohinuzzaman M, Didar-ul-Alam M, Mostofa KMG, Islam ARMT, Niloy NM (2021) Salinity-induced fluorescent dissolved organic matter influence co- contamination, quality and risk to human health of tube well water, southeast coastal Bangladesh. Chemosphere 275:130053

    Article  CAS  Google Scholar 

  • Kang M, Tian Y, Zhang H, Wan C (2021) Spatial distribution characteristics and health risk assessment of heavy metals in surface sediment of the Hai River and its tributaries in Tianjin, China. Water Sci Technol 84(6):1487. https://doi.org/10.2166/wst.2021.322

    Article  CAS  Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Bio Cybernetics 43(1):59–69

    Article  Google Scholar 

  • Kohonen T (2001) Self-organizing maps, third edn. Springer, Berlin

    Book  Google Scholar 

  • Kormoker T, Proshad R, Islam MS, Shamsuzzoha M, Akter A, Tusher TR (2020) Concentrations, source apportionment and potential health risk of toxic metals in foodstuffs of Bangladesh. Toxin Rev. https://doi.org/10.1080/15569543.2020.1731551

    Article  Google Scholar 

  • Kubra K, Mondol AH, Ali MM, Palash MAU, Islam MS, Islam ARMT, Bhuyan MS, Ahmed ASS, Rahman MZ, Rahman MM (2022) Pollution level of trace metals (As, Pb, Cr and Cd) in the sediment of Rupsha River, Bangladesh: assessment of ecological and human health risks. Front Environ Sci. https://doi.org/10.3389/fenvs.2022.778544

    Article  Google Scholar 

  • Ke X, Gui S, Huang H, Zhang H, Wang C, Guo W (2017) Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.02.029

    Article  Google Scholar 

  • Khan R, Islam HMT, Islam ARMT (2021) Mechanism of elevated radioactivity in a freshwater basin: radiochemical characterization, provenance and associated hazards. Chemosphere 264(1):128459. https://doi.org/10.1016/j.chemosphere.2020.128459

    Article  CAS  Google Scholar 

  • Khan R, Yokozuka Y, Terai S, Shirai N, Ebihara M (2015) Accurate determination of Zn in geological and cosmochemical rock samples by isotope dilution inductively coupled plasma mass spectrometry. J Anal at Spectrom 30:506–514. https://doi.org/10.1039/c4ja00344f

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK, Qin Y (2019) Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment. J Air Waste Manage Assoc 55:1190–1199

    Article  Google Scholar 

  • Khan R, Das S, Kabir S, Habib MA, Naher K, Islam MA, Tamim U, Rahman AKMR, Deb AK, Hossain SM (2019) Evaluation of the elemental distribution in soil samples collected from ship-breaking areas and an adjacent island. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103189

    Article  Google Scholar 

  • Khan R, Islam MS, Tareq ARM, Naher K, Islam ARMT, Habib MA, Siddique MAB, Islam MA, Das S, Rashid MB, Ullah AKMA, Miah MMH, Masrura SU, Bodrud-Doza M, Sarker MR, Badruzzaman ABM (2020) Distribution, sources and ecological risk of trace elements and polycyclic aromatic hydrocarbons in sediments from a polluted urban river in central Bangladesh. Environ Nanotechnol Monit Manag 14:100318. https://doi.org/10.1016/j.enmm.2020.100318

    Article  Google Scholar 

  • Kumar S, Islam ARMT, Hasanuzzaman M, Salam R, Khan R, Islam MS (2021a) Preliminary appraisal of heavy metals in surface water and sediment in Nakuvadra-Rakiraki River, Fiji using indexical and chemometric approaches. J Environ Manage 298:113517. https://doi.org/10.1016/j.jenvman.2021.113517

    Article  CAS  Google Scholar 

  • Kumar S, Islam ARMT, Islam HMT, Hasanuzzaman M, Ongoma V, Khan R, Mallick J (2021b) Water resources pollution associated with risks of heavy metals from Vatukoula Goldmine, region, Figi. J Environ Manag 293:112868. https://doi.org/10.1016/j.jenvman.2021.112868

    Article  CAS  Google Scholar 

  • Kumar S, Islam ARMT, Hasanuzzaman M, Salam R, Islam MS, Khan R, Rahman MS, Pal SC, Ali MM, Idris AM, Gustave W, Elbeltagi A (2022) Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. Environ Sci Pollut Res. https://doi.org/10.21203/rs.3.rs-941620/v1

    Article  Google Scholar 

  • Larsen RK, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons intheurbanatmosphere: a comparison of threemethods. Environ Sci Technol 37:1873–1881

    Article  CAS  Google Scholar 

  • Li P-Y, Hui Q, Jian-Hua Wu (2010) Groundwater quality assessment based on improved water quality index in Pengyang County, Ningxia, Northwest China. E-J Chem 7(s1):S209–S216. https://doi.org/10.1155/2010/451304

    Article  CAS  Google Scholar 

  • Liu J, Yin P, Chen B, Gao F, Song H, Li M (2016) Distribution and contamination assessment of heavy metals in surface sediments of the Luanhe River Estuary, northwest of the Bohai Sea. Mar Pollut Bull 109(1):633–639

    Article  CAS  Google Scholar 

  • Li F, Zhu J, Deng X, Zhao Y, Li S (2018) Assessment and uncertainty analysis of groundwater risk. Environ Res 160:140–151. https://doi.org/10.1016/j.envres.2017.09.030

    Article  CAS  Google Scholar 

  • Li J, Chen Y, Lu H, Zhai W (2021) Spatial distribution of heavy metal contamination and uncertainty-based human health risk in the aquatic environment using multivariate statistical method. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-12212-x

    Article  Google Scholar 

  • Maanan M, Saddik M, Maanan M, Chaibi M, Assobhei O, Zourarah B (2015) Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol Indic 48:616–626

    Article  CAS  Google Scholar 

  • Majed N, Real MIH, Redwan A, Azam HM (2021) How dynamic is the heavy metals pollution in the Buriganga River of Bangladesh? A spatiotemporal assessment based on environmental indices. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03434-8

    Article  Google Scholar 

  • Manju MN, Kumar CSR, Resmi P, Gireeshkumar TR, Joseph MM, Salas PM, Chandramohanakumar N (2020) Trace metal distribution in the sediment cores of mangrove ecosystems along northern Kerala coast, south-west coast of India. Mar Pollut Bull 153:110946

    Article  CAS  Google Scholar 

  • McGillicuddy E, Murray I, Kavanagh S et al (2017) Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci Total Environ 575:231–246

    Article  CAS  Google Scholar 

  • Mitamura M, Masuda H, Itai T, Minowa T, Maruola T, Ahmed KM, Seddique AA, Dipak BK, Nakaya S, Li XD, Uesugi K, Kusakabe M (2008) Geological structure of an arsenic-contaminated aquifer at Sonargaon, Bangladesh. J Geol 116:288–302

    Article  CAS  Google Scholar 

  • Mondal I, Bandyopadhyay J, Paul AK (2016) Water quality modeling for seasonal fluctuation of Ichamati river, West Bengal, India. Model Earth Syst Environ 2:113. https://doi.org/10.1007/s40808-016-0153-3

    Article  Google Scholar 

  • Men C, Liu RM, Wang QR, Guo LJ, Miao YX, Shen ZY (2019) Uncertainty analysis in source apportionment of heavy metals in road dust based on positive matrix factorization model and geographic information system. Sci Total Environ 652:27–39. https://doi.org/10.1016/j.scitotenv.2018.10.212

    Article  CAS  Google Scholar 

  • Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere 55:431–442

    Article  CAS  Google Scholar 

  • Müller G (1979) Schwermetalle in den sediments des rheins-veran-derngren seitt. 1971. Umschan 79:778–783

    Google Scholar 

  • Murhekar GH (2011) Determination of physico-chemical parameters of surface water samples in and around Akot City. Int J Res Chem Environ 1(2):183–187

    Google Scholar 

  • Namngam N, Xue W, Liu X, Kootattep T, Shrestha RP, Wattayakorn G, Tabucanon AS, Yu S (2021) Sedimentary metals in developing tropical watersheds in relation to their urbanization intensities. J Env Manage 278:111521

    Article  CAS  Google Scholar 

  • Niu Y, Jiang X, Wang K, Xia J, Jiao W, Niu Y, Yu H (2020) Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Sci Total Environ 700:134509. https://doi.org/10.1016/j.scitotenv.2019.134509

    Article  CAS  Google Scholar 

  • Okorafor KA, Effanga EO, Andem AB, George UU, Amos DI (2013) Spatial variation in physical and chemicalparameters and macro-invertebrates in the intertidal regions of Calabar river, Nigeria. Green J Geol Earth Sci 1(2):063–072

    Google Scholar 

  • Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemometr Intell Lab Syst 37:23–35

    Article  CAS  Google Scholar 

  • Pandey LK, Park J, Son DH, Kim W, Islam MS, Choi S, Lee H, Han T (2019) Assessment of metal contamination in water and sediments from major rivers in South Korea from 2008 to 2015. Sci Total Environ 651:323–333

    Article  CAS  Google Scholar 

  • Park YS, Céréghino R, Compin A, Lek S (2003) Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol Model 160:265–280. https://doi.org/10.1016/S0304-3800(02)00258-2

    Article  Google Scholar 

  • Park YS, Kwon YS, Hwang SJ, Park S (2014) Characterizing effects of landscape and morphometric factors on water quality of reservoirs using a self-organizing map. Environ Model Softw. https://doi.org/10.1016/j.envsoft.2014.01.031

  • Pei-Yue L, Hui Q, Jian-Hua W (2011) Application of set pair analysis method based on entropy weight in groundwater quality assessment -a case study in Dongsheng City, Northwest China. E-J Chem 8(2):851–858

    Article  Google Scholar 

  • Polissar AV, Hopke PK, Malm WC, Sisler JF (1998) The ratio of aerosol optical absorption coefficients to sulfur concentrations, as an indicator of smoke from forest fires when sampling in polar regions. Atmos Environ 30:1147–1157

    Article  Google Scholar 

  • Proshad R, Kormoker T, Islam S (2019) Distribution, source identification, ecological and health risks of heavy metals in surface sediments of the Rupsa River. Toxin Reviews, Bangladesh. https://doi.org/10.1080/15569543.2018.1564143

    Book  Google Scholar 

  • Proshad R, Kormoker T, Islam S (2021) Distribution, source identification, ecological and health risks of heavy metals in surface sediments of the Rupsa River, Bangladesh. Toxin Rev. https://doi.org/10.1080/15569543.2018.1564143

    Article  Google Scholar 

  • Proshad R, Abdullah Al M, Islam MS, Khadka S, Kormoker T, Uddin M, Modeo L (2021a) Investigation of trace metals in riverine waterways of Bangladesh using multivariate analyses: spatial toxicity variation and potential health risk assessment. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13077-4

    Article  Google Scholar 

  • Proshad R, Kormoker T, Abdullah Al M, Islam MS, Khadka S, Idris AM (2022) Receptor model-based source apportionment and ecological risk of metals in sediments of an urban river in Bangladesh. J Hazard Mater 423:127030. https://doi.org/10.1016/j.jhazmat.2021.127030

    Article  CAS  Google Scholar 

  • Qiu YW (2015) Bioaccumulation of heavy metals both in wild and mariculture food chains in Daya Bay, South China. Estuar Coast Shelf Sci. https://doi.org/10.1016/j.ecss.2015.05.036

    Article  Google Scholar 

  • Rahman MS, Ahmed Z, Sheefat SM, Alam R, Islam ARMT et al (2022) Assessment of heavy metal contamination in sediment at the newly established tannery industrial Estate in Bangladesh: a case study. Environ Chem Ecotoxicol 4:1. https://doi.org/10.1016/j.enceco.2021.10.001

    Article  CAS  Google Scholar 

  • Raphael EC, Augustina OC, Frank EO (2011) Trace metals distribution in fish tissues, bottom sediments and water from Okumeshi River in Delta State, Nigeria. Environ Res J 5:6–10. https://doi.org/10.3923/erj.2011.6.10

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatisbon Geochemistry, vol 3. Elsevier, Amsterdam, pp 1–6

    Google Scholar 

  • Rudnick RL, Gao S (2014) Composition of the continental crust. In: Treatise on geochemistry, second ed, pp 1–64 (Chapter 4)

    Google Scholar 

  • Selvaraj K, Ram Mohan V, Szefer P (2004) Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: geochemical and statistical approaches. Mar Pollut Bull 49:174–185

    Article  CAS  Google Scholar 

  • Shah BA, Shah AV, Mistry CB, Navik AJ (2013) Assessment of heavy metals in sediments near Hazira industrial zone at Tapti River estuary, Surat, India. Environ. Earth Sci 69(7):2365–2376

    Article  CAS  Google Scholar 

  • Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  Google Scholar 

  • Shil S, Singh UK (2019) Health risk assessment and spatial variations of dissolved heavy metals and metalloids in a tropical river basin system. Ecol Indic 106:105455

    Article  CAS  Google Scholar 

  • Shirani M, Afzali KN, Jahan S, Strezov V, Soleimani-Sardo M (2020) Pollution and contamination assessment of heavy metals in the sediments of Jazmurian playa in southeast Iran. Sci Rep 10(1):1–11

    Article  Google Scholar 

  • Siddiqui E, Pandey J (2019) Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: a basin-scale study. Environ Sci Pollut Res 26(11):10926–10940. https://doi.org/10.1007/s11356-019-04495-6

    Article  CAS  Google Scholar 

  • Siddique MAB, Khan R, Islam ARMT, Alam MK, Islam MS, Hossain MS, Habib MA, Akbor MA, Bithi UH, Rashid MB, Hossain F, Rahman IMM, Elius IB, Islam MS (2021) Quality assessment of freshwaters from a coastal city of southern Bangladesh: irrigation feasibility and preliminary health risks appraisal. Environ Nanotechnol Monit Manag 16:100524. https://doi.org/10.1016/j.enmm.2021.100524

    Article  CAS  Google Scholar 

  • Siddique MAB, Islam ARMT, Hossain MS, Khan R, Akbor MA, Hasanuzzaman M, Sajid MWM, Mia MY, Mallick J, Rahman MS, Rahman MM, Bodrud-Doza M (2022) Multivariate statistics and entropy theory for irrigation water quality and entropy-weighted index development in a subtropical urban river, Bangladesh. Environ Sci Pollut Res 29:42742–42767

    Article  Google Scholar 

  • Subramanian V, Jha PK, Van Grieken R (1988) Heavy metals in the Ganges estuary. Mar Pollut Bull 19(6):290–293

    Article  CAS  Google Scholar 

  • Suresh G, Sutharsan P, Ramasamy V, Venkatachalapathy R (2012) Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol Environ Saf 84:117–124

    Article  CAS  Google Scholar 

  • Tamim U, Khan R, Jolly YN, Fatema K, Das S, Naher K, Islam MA, Islam SMA, Hossain SM (2016) Elemental distribution of metals in urban river sediments near an industrial effluent source. Chemospher 155:509–518. https://doi.org/10.1016/j.chemosphere.2016.04.099

    Article  CAS  Google Scholar 

  • Tomlinson DC, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol Mar Res 33:566–575

    Google Scholar 

  • U.S Environmental Protection Agency (USEPA) (2020) National recommended water quality criteria - aquatic life criteria table. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-lifecriteria-table#table. Accessed date: 08 January 2021

  • USEPA (2014) Sediment sampling. United States Environmental Protection Agency, Georgia, United States. https://www.epa.gov/sites/production/files/2015-06/documents/Sediment-Sampling.pdf. Accessed 08 January 2021

  • Ustaoğlu F, Tepe Y (2019) Water quality and sediment contamination assessment of Pazarsuyu Stream, Turkey using multivariate statistical methods and pollution indicators. Int Soil Water Conserv Res 7:47–56

    Article  Google Scholar 

  • Ustaoğlu F, Islam MS (2020) Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: a preliminary assessment for ecotoxicological status and health risk. Ecol Ind 113:106237

    Article  Google Scholar 

  • Vesanto J, Alhoniemi E (2000a) Clustering of the self-organizing map. IEEE Trans Neural Networks 11(3):586–600. https://doi.org/10.1109/72.84673

    Article  CAS  Google Scholar 

  • Vesanto J et al (2000b) SOM toolbox for Matlab 5. Report A 57:60

    Google Scholar 

  • Viswanath NC, Kumar PGD, Ammad KK (2015) Statistical analysis of quality of water in various water shed for Kozhikode City, Kerala, India. Aquat Procedia. https://doi.org/10.1016/j.aqpro.2015.02.136

    Article  Google Scholar 

  • Vu CT, Lin C, Yeh G, Villanueva MC (2017) Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: assessment and possible human health implications. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-9590-4

    Article  Google Scholar 

  • Wang H, Jiang XW, Wan L, Han GL, Guo HM (2015) Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. J Hydrol 527:433–441. https://doi.org/10.1016/j.jhydrol.2015.04.063

    Article  CAS  Google Scholar 

  • Wang L, Guo Z, Xiao X, Chen T, Liao X, Song J, Wu B (2008) Heavy metal pollution of soils and vegetables in the midstream and downstream of the Xiangjiang River, Hunan Province. J Geogr Sci 18:353–362

    Article  Google Scholar 

  • Wang Z, Xiao J, Wang L, Liang T, Guo Q, Guan Y, Rinklebe J (2020) Elucidating the differentiation of soil heavy metals under different land uses with geographically weighted regression and self-organizing map. Environ Pollut 260:114065. https://doi.org/10.1016/j.envpol.2020.114065

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. Academic Press, San Diego

    Google Scholar 

  • WHO (World Health Organization) (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • WHO (2018) Guidelines on sanitation and health. World Health Organization, Switzerland, pp 220. Accessed 10 Jan 2021

  • Williams JA, Antoine J (2020) Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index. Mar Pollut Bull 157:111288

    Article  CAS  Google Scholar 

  • Wu C, Fang C, Wu X, Zhu G, Zhang Y (2021) Hydrogeochemical characterization and quality assessment of groundwater using self-organizing maps in the Hangjinqi gasfield area, Ordos Basin, NW China. Geosci Front 12(2):781–790. https://doi.org/10.1016/j.gsf.2020.09.012

    Article  CAS  Google Scholar 

  • Wu J, Li J, Teng Y, Chen H, Wang Y (2020) A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks. J Hazard Mater 388:121766

    Article  CAS  Google Scholar 

  • Xiao R, Bai J, Lu Q, Zhao Q, Gao Z, Wen X, Liu X (2015) Fractionation, transfer, and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in an estuary of China. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2015.02.052

    Article  Google Scholar 

  • Xu J, Chen Y, Zheng L, Liu B, Liu J, Wang X (2018) Assessment of heavy metal pollution in the sediment of the main tributaries of Dongting Lake, China. Water (switzerland). https://doi.org/10.3390/w10081060

    Article  Google Scholar 

  • Zanotti C, Rotiroti M et al (2019) Groundwater and surface water quality characterization through positive matrix factorization combined with GIS approach. Water Res 159:122–134

    Article  CAS  Google Scholar 

  • Zeinalzadeh K, Rezaei E (2017) Determining spatial and temporal changes of surface water quality using principal component analysis. J Hydrol Reg Stud 13:1–10. https://doi.org/10.1016/j.ejrh.2017.07.002

    Article  Google Scholar 

  • Zhang T, Xu W, Lin X, Yan H, Ma M, He Z (2019) Assessment of heavy metals pollution of soybean grains in North Anhui of China. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2018.07.335

    Article  Google Scholar 

  • Zuzolo D, Cicchella D, Catani V, Giaccio L, Guagliardi I, Esposito L, De Vivo B (2017) Assessment of potentially harmful elements pollution in the Calore River basin (Southern Italy). Environ Geochem Health 39(3):531–548

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We truly acknowledge the Institute of National Analytical Research and Service (INARS) and the Bangladesh Council of Scientific and Industrial Research (BCSIR) for their assistance in analyzing the samples for this research work.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Small Groups Project under grant number (RGP.1/215/43).

Author information

Authors and Affiliations

Authors

Contributions

Md Nasiruddin: designed, writing—original, draft, and proofreading during the manuscript drafting stage. Md. Abu Bakar Siddique: instrumental setup, methodology, formal analysis, investigation, data curation, validation, writing—original draft preparation, writing—reviewing, and editing. Md. Mahedi Hassan: writing—original draft and proofreading during the manuscript drafting stage. Abu Reza Md. Towfiqul Islam: designed, planned, conceptualization, writing—original draft, and proofreading during the manuscript drafting stage. Md. Ahedul Akbor: formal analysis and proofreading during the manuscript drafting stage. Mehedi Hassan: formal analysis and proofreading during the manuscript drafting stage. Subodh Chandra Pal: software, mapping, and proofreading during the manuscript drafting stage. Md. Hasanuzzaman: statistical analysis, formal analysis, interpretation, manuscript editing, literature review, and proofreading. Abubakr Mustafa Idris: manuscript editing, literature review, and proofreading. Md. Al Amin: statistical analysis, formal analysis, interpretation, software, mapping, and proofreading during the manuscript drafting stage. Md Saiful Islam: formal analysis, validation, manuscript editing, literature review, software, mapping, and proofreading during the manuscript drafting stage. Rahat Khan: formal analysis, validation, manuscript editing, literature review, software, mapping, and proofreading during the manuscript drafting stage. Satendra Kumar: formal analysis, validation, and proofreading during the manuscript drafting stage.

Corresponding author

Correspondence to Abu Reza Md Towfiqul Islam.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Xianliang Yi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1029 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiruddin, M., Islam, A.R.M.T., Siddique, M.A.B. et al. Distribution, sources, and pollution levels of toxic metal(loid)s in an urban river (Ichamati), Bangladesh using SOM and PMF modeling with GIS tool. Environ Sci Pollut Res 30, 20934–20958 (2023). https://doi.org/10.1007/s11356-022-23617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23617-1

Keywords

Navigation