Skip to main content
Log in

Boosted photocatalytic effect of binary AgI/Ag2WO4 nanocatalyst: characterization and kinetics study towards ceftriaxone photodegradation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In modern chemistry, great interest has been paid to introducing outstanding photocatalysts for degrading organic pollutants. Herein, a highly efficient binary AgI/Ag2WO4 photocatalyst was prepared from AgI and Ag2WO4 nanoparticles (NPs) and characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), and Fourier transform infrared (FT-IR) techniques. In the Scherrer model, the average crystallite sizes of 34.9, 42.0, and 24.1 nm were estimated for the AgI, Ag2WO4, and the binary catalyst, while the values were 91, 13, and 85 nm by the Williamson-Hall model. FTIR confirmed the presence of W–O–W, O–W–O, Ag-I, and O–Ag–O bonds in the coupled material. DRS results showed absorption edge wavelengths of 451, 462, and 495 nm (corresponding to the band gap values of 2.75, 2.68, and 2.51 eV) for Ag2WO4, AgI, and AgI/Ag2WO4 catalyst, respectively. Synergistic photocatalytic activity of the coupled system was achieved towards ceftriaxone (CTX) in an aqueous solution (about 33% 10 ppm CTX solution was degraded without any optimization in the initial conditions of catal dose 0.3 g/L (Ag2WO4:AgI with mole ratio 1:2 and 30 min abrasion time), and irrad. time 45 min, CCTX). This boosted effect depended on the AgI:Ag2WO4 mole ratio and grinding time for the mechanical preparation of the binary catalyst (optimums: mole ratio of 4:1 and time 30 min). The photodegradation kinetics obeyed the Hinshelwood model with the apparent first-order rate constant (k) of 0.013 min−1 (t1/2 = 53.30 min). Performing the COD on the photodegraded CTX solutions got a Hinshelwood plot with a slope of 0.019 min−1 (t1/2 = 36.5 min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abbas KK, AbdulkadhimAl-Ghaban AMH, Rdewi EH (2022) Synthesis of a novel ZnO/TiO2-nanorod MXene heterostructured nanophotocatalyst for the removal pharmaceutical ceftriaxone sodium from aqueous solution under simulated sunlight. J Environ Chem Eng 10(4):108111. https://doi.org/10.1016/j.jece.2022.108111

    Article  CAS  Google Scholar 

  • Ahmadian-Fard-Fini S, Ghanbari D, Amiri O, Salavati-Niasari M (2020) Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions. Carbohyd Polym 229:115428. https://doi.org/10.1016/j.carbpol.2019.115428

    Article  CAS  Google Scholar 

  • Alvarez-Roca R, Gouveia AF, de Foggi CC, Lemos PS, Gracia L, da Silva LF, . . . Andrés J (2021) Selective synthesis of α-, β-, and γ-Ag2WO4 polymorphs: promising platforms for photocatalytic and antibacterial materials. Inorg Chem 60(2):1062-1079. https://doi.org/10.1021/acs.inorgchem.0c03186

  • Amiri M, Salavati-Niasari M, Pardakhty A, Ahmadi M, Akbari A (2017) Caffeine: a novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery. Mater Sci Eng C 76:1085–1093. https://doi.org/10.1016/j.msec.2017.03.208

    Article  CAS  Google Scholar 

  • Arif M, Zhang M, Mao Y, Bu Q, Ali A, Qin Z, . . . Chen S-m (2021) Oxygen vacancy mediated single unit cell Bi2WO6 by Ti doping for ameliorated photocatalytic performance. J Colloid Interface Sci 581:276-291. https://doi.org/10.1016/j.jcis.2020.07.113

  • Bessergenev V, Mateus MdC, Morgado I, Hantusch M, Burkel E (2017) Photocatalytic reactor, CVD technology of its preparation and water purification from pharmaceutical drugs and agricultural pesticides. Chem Eng J 312:306-316

  • Bi Y, Li R, Guo F, Zhu C, Pei J (2021) Photocatalytic purification of vehicle exhaust using CeO2–Bi2O3 loaded on white carbon and tourmaline. Environ Sci Pollut Res 28(14):17724–17738. https://doi.org/10.1007/s11356-020-11899-2

    Article  CAS  Google Scholar 

  • Bordbar M, Sayban Z, Yeganeh-Faal A, Khodadadi B (2018) Incorporation of Pb2+, Fe2+ and Cd2+ ions in ZnO nanocatalyst for photocatalytic activity. Iran J Catal 8(2):113–120. http://ijc.iaush.ac.ir/article_606118_35203ce72ac80a5720a30b286a380d6c.pdf

  • Cavalcante L, Almeida M, Avansi Jr W, Tranquilin R, Longo E, Batista N, . . . Li MS (2012) Cluster coordination and photoluminescence properties of α-Ag2WO4 microcrystals. Inorg Chem 51(20):10675-10687

  • Chai SY, Kim YJ, Jung MH, Chakraborty AK, Jung D, Lee WI (2009) Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J Catal 262(1):144–149

    Article  CAS  Google Scholar 

  • Chaker H, Ameur N, Saidi-Bendahou K, Djennas M, Fourmentin S (2021a) Modeling and Box-Behnken design optimization of photocatalytic parameters for efficient removal of dye by lanthanum-doped mesoporous TiO2. J Environ Chem Eng 9(1):104584. https://doi.org/10.1016/j.jece.2020.104584

    Article  CAS  Google Scholar 

  • Chaker H, Attar AE, Djennas M, Fourmentin S (2021b) A statistical modeling-optimization approach for efficiency photocatalytic degradation of textile azo dye using cerium-doped mesoporous ZnO: a central composite design in response surface methodology. Chem Eng Res Des 171:198–212. https://doi.org/10.1016/j.cherd.2021.05.008

    Article  CAS  Google Scholar 

  • Chen H, Xu Y (2014) Photoactivity and stability of Ag2WO4 for organic degradation in aqueous suspensions. Appl Surf Sci 319:319–323

    Article  CAS  Google Scholar 

  • Cheng H, Huang B, Dai Y, Qin X, Zhang X (2010) One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir 26(9):6618–6624

    Article  CAS  Google Scholar 

  • Cheng H, Huang B, Qin X, Zhang X, Dai Y (2012) A controlled anion exchange strategy to synthesize Bi 2 S 3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity. Chem Commun 48(1):97–99

    Article  CAS  Google Scholar 

  • Cheng W, Jiang L, Quan X, Cheng C, Huang X, Cheng Z, Yang L (2019) Ozonation process intensification of p-nitrophenol by in situ separation of hydroxyl radical scavengers and microbubbles. Water Sci Technol 80(1):25–36. https://doi.org/10.2166/wst.2019.227

    Article  CAS  Google Scholar 

  • Choi J, Reddy DA, Kim TK (2015) Enhanced photocatalytic activity and anti-photocorrosion of AgI nanostructures by coupling with graphene-analogue boron nitride nanosheets. Ceram Int 41(10):13793–13803

    Article  CAS  Google Scholar 

  • Collu DA, Carucci C, Piludu M, Parsons DF, Salis A (2022) Aurivillius oxides nanosheets-based photocatalysts for efficient oxidation of malachite green dye. Int J Mol Sci 23(10):5422. https://www.mdpi.com/1422-0067/23/10/5422

  • Cruz-Ortiz BR, Hamilton JW, Pablos C, Díaz-Jiménez L, Cortés-Hernández DA, Sharma PK, . . . Byrne JA (2017) Mechanism of photocatalytic disinfection using titania-graphene composites under UV and visible irradiation. Chem Eng J 316:179-186

  • Davar F, Salavati-Niasari M, Fereshteh Z (2010) Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor. J Alloy Compd 496(1):638–643. https://doi.org/10.1016/j.jallcom.2010.02.152

    Article  CAS  Google Scholar 

  • Davoodi E, Tahanpesar E, Massah AR (2022) Synthesis of 1,8-dioxo-octahydroxanthenes utilizing nanodiatomite@melamine-SO3H as a novel heterogeneous catalyst under solvent-free conditions. J Chem Sci 134(3):72. https://doi.org/10.1007/s12039-022-02065-x

    Article  Google Scholar 

  • Dianat S (2018) Visible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite. Iran J Catal 8(2):121–132. http://ijc.iaush.ac.ir/article_604759.html

  • EL Bekkali C, Bouyarmane H, Laasri S, Laghzizil A, Saoiabi A (2018) Effects of metal oxide catalysts on the photodegradation of antibiotics effluent. Iran J Catal 8(4):241-247. http://ijc.iaush.ac.ir/article_625815_c42ba50d7e9919c703fdc2a3019fb2ff.pdf

  • Elmi Fard N, Fazaeli R (2018) Experimental design study of RB 255 photocatalytic degradation under visible light using synthetic Ag/TiO2 nanoparticles: optimization of experimental conditions. Iranian Journal of Catalysis, 8(2):133–141. http://ijc.iaush.ac.ir/article_606487_ab2e2695787ad5589279f4bd1f9b66fd.pdf

  • Eslami A, Oghazyan A, Sarafraz M (2018) Magnetically separable MgFe2O4 nanoparticle for efficient catalytic ozonation of organic pollutants. Iran J Catal 8(2):95–102. http://ijc.iaush.ac.ir/article_604652_6b24d60659fbdf1cae5bc59e8ac2c804.pdf

  • Fei L, Ali F, Said A, Tariq N, Raziq F, Ali N, . . . Bilal M (2022) Surface-functionalized spongy zinc ferrite as a robust visible-light driven nanocatalyst for wastewater remediation: characterization, kinetic, and mechanistic insight. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-022-04026-w

  • Hallmich C, Gehr R (2010) Effect of pre-and post-UV disinfection conditions on photoreactivation of fecal coliforms in wastewater effluents. Water Res 44(9):2885–2893

    Article  CAS  Google Scholar 

  • Harris S, Morris C, Morris D, Cormican M, Cummins E (2014) Antimicrobial resistant Escherichia coli in the municipal wastewater system: effect of hospital effluent and environmental fate. Sci Total Environ 468:1078–1085

    Article  Google Scholar 

  • Hassani A, Eghbali P, Ekicibil A, Metin Ö (2018) Monodisperse cobalt ferrite nanoparticles assembled on mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4): a magnetically recoverable nanocomposite for the photocatalytic degradation of organic dyes. J Magn Magn Mater 456:400–412. https://doi.org/10.1016/j.jmmm.2018.02.067

    Article  CAS  Google Scholar 

  • Hassani A, Faraji M, Eghbali P (2020) Facile fabrication of mpg-C3N4/Ag/ZnO nanowires/Zn photocatalyst plates for photodegradation of dye pollutant. J Photochem Photobiol, A 400:112665. https://doi.org/10.1016/j.jphotochem.2020.112665

    Article  CAS  Google Scholar 

  • Hassani A, Krishnan S, Scaria J, Eghbali P, Nidheesh PV (2021) Z-scheme photocatalysts for visible-light-driven pollutants degradation: A review on recent advancements. Curr Opin Solid State Mater Sci 25(5):100941. https://doi.org/10.1016/j.cossms.2021.100941

    Article  CAS  Google Scholar 

  • Hawari NL, Johan MR (2011) Synthesis and characterizations of AgI nanoparticles via mechanochemical reaction. J Alloy Compd 509(5):2001–2006

    Article  CAS  Google Scholar 

  • Hosseini SA, Akbari M, Nikbakht J (2018) Adsorptive desulfurization of oil derivatives using nanostructured Mg-Al layered double hydroxides: Eeperimental design and modeling. Iran J Catal 8(1):17–27. http://ijc.iaush.ac.ir/article_594972_084c73549e80ccc21b5fa50cbafe9de1.pdf

  • Jiang M, Wang L, Ji R (2010) Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment. Chemosphere 80(11):1399–1405. https://doi.org/10.1016/j.chemosphere.2010.05.048

    Article  CAS  Google Scholar 

  • Jiang W, An C, Liu J, Wang S, Zhao L, Guo W, Liu J (2014) Facile aqueous synthesis of β-AgI nanoplates as efficient visible-light-responsive photocatalyst. Dalton Trans 43(1):300–305

    Article  CAS  Google Scholar 

  • Jing Y-J, Kang L (2020) CdS nanoparticles decorated Ag2WO4 nanorods for increased photocatalytic performance and stability under visible light irradiation. Ceram Int 46(11):18826–18831

    Article  CAS  Google Scholar 

  • Karimi-Shamsabadi M, Behpour M (2021) Comparing photocatalytic activity consisting of Sb2S3 and Ag2S on the TiO2–SiO2/TiO2 nanotube arrays-support for improved visible-light-induced photocatalytic degradation of a binary mixture of basic blue 41 and basic red 46 dyes. Int J Hydrogen Energy 46(53):26989–27013. https://doi.org/10.1016/j.ijhydene.2021.05.199

    Article  CAS  Google Scholar 

  • Karimi Shamsabadi M, Behpour M (2021) Fabricated CuO–ZnO/nanozeolite X heterostructure with enhanced photocatalytic performance: mechanism investigation and degradation pathway. Mater Sci Eng, B 269:115170. https://doi.org/10.1016/j.mseb.2021.115170

    Article  CAS  Google Scholar 

  • Khairnar SD, Patil MR, Shrivastava VS (2018) Hydrothermally synthesized nanocrystalline Nb2O5 and its visible-light photocatalytic activity for the degradation of congo red and methylene blue. Iran J Catal 8(2):143–150. http://ijc.iaush.ac.ir/article_609835_89d76044f089331a8fd92745e79b0026.pdf

  • Kuvarega AT, Khumalo N, Dlamini D, Mamba BB (2018) Polysulfone/N, Pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Sep Purif Technol 191:122–133

    Article  CAS  Google Scholar 

  • Landi S, Carneiro J, Soares OSGP, Pereira MFR, Gomes AC, Ribeiro A, . . . Neves IC (2019) Photocatalytic performance of N-doped TiO2nano-SiO2-HY nanocomposites immobilized over cotton fabrics. J Mater Res Technol 8(2):1933-1943. https://doi.org/10.1016/j.jmrt.2018.06.025

  • Landi S, Segundo IR, Afonso C, Lima O, Costa MFM, Freitas E, Carneiro J (2022a) Evaluation of band gap energy of TiO2 precipitated from titanium sulphate. Physica B 639:414008. https://doi.org/10.1016/j.physb.2022.414008

    Article  CAS  Google Scholar 

  • Landi S, Segundo IR, Freitas E, Vasilevskiy M, Carneiro J, Tavares CJ (2022b) Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun 341:114573. https://doi.org/10.1016/j.ssc.2021.114573

    Article  CAS  Google Scholar 

  • Li J, Yu C, Zheng C, Etogo A, Xie Y, Zhong Y, Hu Y (2015) Facile formation of Ag2WO4/AgX (X= Cl, Br, I) hybrid nanorods with enhanced visible-light-driven photoelectrochemical properties. Mater Res Bull 61:315–320

    Article  CAS  Google Scholar 

  • Li Y, Jin R, Fang X, Yang Y, Yang M, Liu X, . . . Song S (2016) In situ loading of Ag2WO4 on ultrathin g-C3N4 nanosheets with highly enhanced photocatalytic performance. J Hazard Mater 313:219-228

  • Lotfian N, Nourbakhsh A, Mirsattari SN, Saberi A, Mackenzie KD (2020) A comparison of the effect of nanostructured MgCr2O4 and FeCr2O4 additions on the microstructure and mechanical properties of direct-bonded magnesia-chrome refractories. Ceram Int 46(1):747–754. https://doi.org/10.1016/j.ceramint.2019.09.028

    Article  CAS  Google Scholar 

  • Lu C, Yin X, Liu X, Wang M (2014) Study of the Photodegradation Kinetics and Pathways of Hexaflumuron in Liquid Media. Photochem Photobiol 90(6):1219–1223. https://doi.org/10.1111/php.12314

    Article  CAS  Google Scholar 

  • Lv J, Dai K, Zhang J, Lu L, Liang C, Geng L, . . . Zhu G (2017) In situ controllable synthesis of novel surface plasmon resonance-enhanced Ag2WO4/Ag/Bi2MoO6 composite for enhanced and stable visible light photocatalyst. Appl Surf Sci 391:507-515

  • Madihi-Bidgoli S, Asadnezhad S, Yaghoot-Nezhad A, Hassani A (2021) Azurobine degradation using Fe2O3@multi-walled carbon nanotube activated peroxymonosulfate (PMS) under UVA-LED irradiation: performance, mechanism and environmental application. J Environ Chem Eng 9(6):106660. https://doi.org/10.1016/j.jece.2021.106660

    Article  CAS  Google Scholar 

  • Maharana M, Sen S (2022) Synthesis and characterisation of transition metal sulphide-loaded fly ash–based mesoporous EU-12 photocatalysts for degradation of rhodamine B. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-21093-1

  • Martin ST, Herrmann H, Choi W, Hoffmann MR (1994) Time-resolved microwave conductivity. Part 1.—TiO 2 photoreactivity and size quantization. J Chem Soc Faraday Trans 90(21):3315–3322

    Article  CAS  Google Scholar 

  • Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157(11):2893–2902

    Article  CAS  Google Scholar 

  • Matsuura I, Imaizumi M, Sugiyama M (1990) Method of kinetic analysis of photodegradation : nifedipine in solutions. Chem Pharm Bull 38(6):1692–1696. https://doi.org/10.1248/cpb.38.1692

    Article  CAS  Google Scholar 

  • Mohamed R, McKinney D, Sigmund W (2012) Enhanced nanocatalysts. Mater Sci Eng R Rep 73(1):1–13

    Article  CAS  Google Scholar 

  • Monsef R, Ghiyasiyan-Arani M, Salavati-Niasari M (2021) Design of magnetically recyclable ternary Fe2O3/EuVO4/g-C3N4 nanocomposites for photocatalytic and electrochemical hydrogen storage. ACS Appl Energy Mater 4(1):680–695. https://doi.org/10.1021/acsaem.0c02557

    Article  CAS  Google Scholar 

  • Motahari F, Mozdianfard MR, Salavati-Niasari M (2015) Synthesis and adsorption studies of NiO nanoparticles in the presence of H2acacen ligand, for removing Rhodamine B in wastewater treatment. Process Saf Environ Prot 93:282–292. https://doi.org/10.1016/j.psep.2014.06.006

    Article  CAS  Google Scholar 

  • Mousavi M, Habibi-Yangjeh A (2018) Magnetically recoverable highly efficient visible-light-active g-C3N4/Fe3O4/Ag2WO4/AgBr nanocomposites for photocatalytic degradations of environmental pollutants. Adv Powder Technol 29(1):94–105

    Article  CAS  Google Scholar 

  • Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M (2013) Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chem Eng J 217:119–128

    Article  CAS  Google Scholar 

  • Nguyen V-H, Phan Thi L-A, Van Le Q, Singh P, Raizada P, Kajitvichyanukul P (2020) Tailored photocatalysts and revealed reaction pathways for photodegradation of polycyclic aromatic hydrocarbons (PAHs) in water, soil and other sources. Chemosphere 260:127529. https://doi.org/10.1016/j.chemosphere.2020.127529

    Article  CAS  Google Scholar 

  • Ong S-A, Min O-M, Ho L-N, Wong Y-S (2013) Solar photocatalytic degradation of mono azo methyl orange and diazo reactive green 19 in single and binary dye solutions: adsorbability vs photodegradation rate. Environ Sci Pollut Res 20(5):3405–3413. https://doi.org/10.1007/s11356-012-1286-1

    Article  CAS  Google Scholar 

  • Pavlović J, Šuligoj A, Opresnik M, Tušar NN, Logar NZ, Rajić N (2022) Studies of clinoptilolite-rich zeolitic tuffs from different regions and their activity in photodegradation of methylene blue. Catalysts, 12(2):224. https://www.mdpi.com/2073-4344/12/2/224

  • Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27

    Article  CAS  Google Scholar 

  • Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84

    Article  CAS  Google Scholar 

  • Pourshirband N, Nezamzadeh-Ejhieh A, Mirsattari SN (2021) The CdS/g-C3N4 nano-photocatalyst: brief characterization and kinetic study of photodegradation and mineralization of methyl orange. Spectrochim Acta Part A Mol Biomol Spectrosc 248:119110. https://doi.org/10.1016/j.saa.2020.119110

    Article  CAS  Google Scholar 

  • Pourshirband N, Nezamzadeh-Ejhieh A, Nezamoddin Mirsattari S (2020) The coupled AgI/BiOI catalyst: synthesis, brief characterization, and study of the kinetic of the EBT photodegradation. Chem Phys Lett 761:138090. https://doi.org/10.1016/j.cplett.2020.138090

    Article  CAS  Google Scholar 

  • Ramasamy V, Praba K, Murugadoss G (2012) Synthesis and study of optical properties of transition metals doped ZnS nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 96:963–971

    Article  CAS  Google Scholar 

  • Roca RA, Lemos PS, Gracia L, Andrés J, Longo E (2017) Uncovering the metastable γ-Ag2WO4 phase: a joint experimental and theoretical study. RSC Adv 7(10):5610–5620. https://doi.org/10.1039/C6RA24692C

    Article  CAS  Google Scholar 

  • Sabzehmeidani MM, Karimi H, Ghaedi M (2020) Enhanced visible light-active CeO 2/CuO/Ag 2 CrO 4 ternary heterostructures based on CeO 2/CuO nanofiber heterojunctions for the simultaneous degradation of a binary mixture of dyes. New J Chem 44(13):5033–5048

    Article  CAS  Google Scholar 

  • Salavati-Niasari M, Davar F (2006) In situ one-pot template synthesis (IOPTS) and characterization of copper(II) complexes of 14-membered hexaaza macrocyclic ligand “3,10-dialkyl-dibenzo-1,3,5,8,10,12-hexaazacyclotetradecane.” Inorg Chem Commun 9(2):175–179. https://doi.org/10.1016/j.inoche.2005.10.028

    Article  CAS  Google Scholar 

  • Senthil R, Priya A, Theerthagiri J, Selvi A, Nithyadharseni P, Madhavan J (2018) Facile synthesis of α-Fe 2 O 3/WO 3 composite with an enhanced photocatalytic and photo-electrochemical performance. Ionics 24(11):3673–3684

    Article  CAS  Google Scholar 

  • Shamaila S, Sajjad AKL, Chen F, Zhang J (2011) WO3/BiOCl, a novel heterojunction as visible light photocatalyst. J Colloid Interface Sci 356(2):465–472

    Article  CAS  Google Scholar 

  • Singh N, Rana MS, Gupta RK (2018) Modelling studies for photocatalytic degradation of organic dyes using TiO2 nanofibers. Environ Sci Pollut Res 25(21):20466–20472. https://doi.org/10.1007/s11356-017-0053-8

    Article  CAS  Google Scholar 

  • Sonu, Sharma S, Dutta V, Raizada P, Hosseini-Bandegharaei A, Thakur V, . . . Singh P (2021) An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification. J Environ Chem Eng 9(5):105812. https://doi.org/10.1016/j.jece.2021.105812

  • Sreedevi A, Priyanka K, Babitha K, Jaseentha O, Varghese T (2016) Structural and optical modifications of the Ag 2 WO 4/CoPc nanocomposite for potential applications. Eur Phys J Plus 131(1):1–8

    Article  CAS  Google Scholar 

  • Tang Y, Jiang Z, Deng J, Gong D, Lai Y, Tay HT, . . . Chen Z (2012) Synthesis of nanostructured silver/silver halides on titanate surfaces and their visible-light photocatalytic performance. ACS Appl Mater Interfaces 4(1):438-446

  • Tehubijuluw H, Subagyo R, Kusumawati Y, Prasetyoko D (2022) The impregnation of ZnO onto ZSM-5 derived from red mud for photocatalytic degradation of methylene blue. Sustain Environ Res 32(1):4. https://doi.org/10.1186/s42834-021-00113-8

    Article  CAS  Google Scholar 

  • Verlicchi P, Al Aukidy M, Zambello E (2015) What have we learned from worldwide experiences on the management and treatment of hospital effluent?—An overview and a discussion on perspectives. Sci Total Environ 514:467–491

    Article  CAS  Google Scholar 

  • Wang P, Lu Z, Zhang D (2015) Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria. Corros Sci 93:159–166

    Article  CAS  Google Scholar 

  • Wang P, Zhang D, Lu Z, Sun S (2016) Fabrication of slippery lubricant-infused porous surface for inhibition of microbially influenced corrosion. ACS Appl Mater Interfaces 8(2):1120–1127

    Article  CAS  Google Scholar 

  • Wang X, Fu C, Wang P, Yu H, Yu J (2013) Hierarchically porous metastable β-Ag2WO4 hollow nanospheres: controlled synthesis and high photocatalytic activity. Nanotechnology 24(16):165602

    Article  Google Scholar 

  • Wen X-J, Niu C-G, Ruan M, Zhang L, Zeng G-M (2017) AgI nanoparticles-decorated CeO2 microsheets photocatalyst for the degradation of organic dye and tetracycline under visible-light irradiation. J Colloid Interface Sci 497:368–377. https://doi.org/10.1016/j.jcis.2017.03.029

    Article  CAS  Google Scholar 

  • Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31

    Article  CAS  Google Scholar 

  • Xie H, Que W, He Z, Zhong P, Liao Y, Wang G (2013) Preparation and photocatalytic activities of Sb2S3/TiO2 nanotube coaxial heterogeneous structure arrays via an ion exchange adsorption method. J Alloy Compd 550:314–319

    Article  CAS  Google Scholar 

  • Xu H, Cao Y, Xie J, Hu J, Li Y, Jia D (2018) A construction of Ag-modified raspberry-like AgCl/Ag2WO4 with excellent visible-light photocatalytic property and stability. Mater Res Bull 102:342–352. https://doi.org/10.1016/j.materresbull.2018.02.047

    Article  CAS  Google Scholar 

  • Xu H, Yan J, Xu Y, Song Y, Li H, Xia J, . . . Wan H (2013) Novel visible-light-driven AgX/graphite-like C3N4 (X= Br, I) hybrid materials with synergistic photocatalytic activity. Appl Catal B: Environ 129:182-193

  • Xu M, Yang J, Sun C, Cui Y, Liu L, Zhao H, Liang B (2021) Facile assembly of BiVO 4/protonated gC 3 N 4/AgI with a novel dual Z-scheme mechanism for visible-light photocatalytic degradation of Rhodamine B. J Mater Sci 56(2):1328–1346

    Article  CAS  Google Scholar 

  • Yang H, Zhang S, Cao R, Deng X, Li Z, Xu X (2017) Constructing the novel ultrafine amorphous iron oxyhydroxide/gC 3 N 4 nanosheets heterojunctions for highly improved photocatalytic performance. Sci Rep 7(1):1–12

    Google Scholar 

  • Yang J, Luo X (2021) Ag-doped TiO2 immobilized cellulose-derived carbon beads: One-Pot preparation, photocatalytic degradation performance and mechanism of ceftriaxone sodium. Appl Surf Sci 542:148724. https://doi.org/10.1016/j.apsusc.2020.148724

    Article  CAS  Google Scholar 

  • Yang Y-Y, Niu C-G, Wen X-J, Zhang L, Liang C, Guo H, . . . Zeng G-M (2019) Fabrication of visible-light-driven silver iodide modified iodine-deficient bismuth oxyiodides Z-scheme heterojunctions with enhanced photocatalytic activity for Escherichia coli inactivation and tetracycline degradation. J Colloid Interface Sci 533:636-648. https://doi.org/10.1016/j.jcis.2018.09.008

  • Yosefi L, Haghighi M (2018) Fabrication of nanostructured flowerlike p-BiOI/p-NiO heterostructure and its efficient photocatalytic performance in water treatment under visible-light irradiation. Appl Catal B 220:367–378

    Article  CAS  Google Scholar 

  • Zazo J, Casas J, Mohedano A, Gilarranz M, Rodriguez J (2005) Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ Sci Technol 39(23):9295–9302

    Article  CAS  Google Scholar 

  • Zebardast M, Fallah Shojaei A, Tabatabaeian K (2018) Enhanced removal of methylene blue dye by bimetallic nano-sized MOF-5s. Iran J Catal 8(4):297–309. http://ijc.iaush.ac.ir/article_625542_e502fa168e7af1c32504505958da13e4.pdf

  • Zhang J, Xia J, Yin S, Li H, Xu H, He M, . . . Zhang Q (2013) Improvement of visible light photocatalytic activity over flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids. Colloids SurfA: Physicochem Eng Asp 420:89-95

  • Zhao Y, Liang X, Shi H, Wang Y, Ren Y, Liu E, . . . Hu X (2018a) Photocatalytic activity enhanced by synergistic effects of nano-silver and ZnSe quantum dots co-loaded with bulk g-C3N4 for Ceftriaxone sodium degradation in aquatic environment. Chem Eng J 353:56-68. https://doi.org/10.1016/j.cej.2018.07.109

  • Zhao Y, Liang X, Wang Y, Shi H, Liu E, Fan J, Hu X (2018b) Degradation and removal of Ceftriaxone sodium in aquatic environment with Bi2WO6/g-C3N4 photocatalyst. J Colloid Interface Sci 523:7–17. https://doi.org/10.1016/j.jcis.2018.03.078

    Article  CAS  Google Scholar 

  • Zhao Y, Wang Y, Liu E, Fan J, Hu X (2018c) Bi2WO6 nanoflowers: an efficient visible light photocatalytic activity for ceftriaxone sodium degradation. Appl Surf Sci 436:854–864. https://doi.org/10.1016/j.apsusc.2017.12.064

    Article  CAS  Google Scholar 

  • Zheng Y, Hu X, Deng F, Li J, Dionysiou DD, Luo X (2021) Enhanced photocatalytic oxidizing ability of Zn1-xIn2x/3S solid solution via band structure by composition regulation. Sep Purif Technol 255:117726. https://doi.org/10.1016/j.seppur.2020.117726

    Article  CAS  Google Scholar 

  • Zhou M, Cheng L, Chen Z, Chen L, Ma Y (2021) CdSe QDs@MoS2 nanocomposites with enhanced photocatalytic activity towards ceftriaxone sodium degradation under visible-light irradiation. J Alloy Compd 869:159322. https://doi.org/10.1016/j.jallcom.2021.159322

    Article  CAS  Google Scholar 

  • Zinatloo-Ajabshir S, Morassaei MS, Amiri O, Salavati-Niasari M, Foong LK (2020) Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram Int 46(11, Part A):17186–17196. https://doi.org/10.1016/j.ceramint.2020.03.014.

  • Zinatloo-Ajabshir S, Mortazavi-Derazkola S, Salavati-Niasari M (2018) Nd2O3-SiO2 nanocomposites: a simple sonochemical preparation, characterization and photocatalytic activity. Ultrason Sonochem 42:171–182. https://doi.org/10.1016/j.ultsonch.2017.11.026

    Article  CAS  Google Scholar 

  • Zinatloo-Ajabshir S, Salavati-Niasari M (2019) Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos B Eng 174:106930. https://doi.org/10.1016/j.compositesb.2019.106930

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Alireza Nezamzadeh-Ejhieh: conceptualization, methodology, supervision, software, writing (reviewing and editing), validation, formal analysis, supervision.

Sabereh Salesi: data curation, writing (original draft0, visualization, investigation, resources, investigation.

Corresponding author

Correspondence to Alireza Nezamzadeh-Ejhieh.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

All authors agree to publish.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 502 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salesi, S., Nezamzadeh-Ejhieh, A. Boosted photocatalytic effect of binary AgI/Ag2WO4 nanocatalyst: characterization and kinetics study towards ceftriaxone photodegradation. Environ Sci Pollut Res 29, 90191–90206 (2022). https://doi.org/10.1007/s11356-022-22100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-22100-1

Keywords

Navigation