Skip to main content
Log in

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater: current understandings and challenges to overcome

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been frequently detected in groundwater globally. With the phase-out of perfluorooctane sulfonate (PFOS) and perfluorooctanate (PFOA) due to their risk to the ecosystem and human population, various novel PFASs have been used as replacements and detected in groundwater. In order to summarize the current understanding and knowledge gaps on PFASs in groundwater, we reviewed the studies about environmental occurrence, transport, and risk of legacy and novel PFASs in groundwater published from 1999 to 2021. Our review suggests that PFOS and PFOA could still be detected in groundwater due to the long residence time and the retention in the soil-groundwater system. Firefighting training sites, industrial parks, and landfills were commonly hotspots of PFASs in groundwater. More novel PFASs have been detected via nontarget analysis using high-resolution mass spectrometry. Some novel PFASs had concentrations comparable to that of PFOS and PFOA. Both legacy and novel PFASs can pose a risk to human population who rely on contaminated groundwater as drinking water. Transport of PFASs to groundwater is influenced by various factors, i.e., the compound structure, the hydrochemical condition, and terrain. The exchange of PFASs between groundwater and surface water needs to be better characterized. Field monitoring, isotope tracing, nontarget screening, and modeling are useful approaches and should be integrated to get a comprehensive understanding of PFASs sources and behaviors in groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ali AM, Langberg HA, Hale SE, Kallenborn R, Hartz WF, Mortensen A-K, Ciesielski TM, McDonough CA, Jenssen BM, Breedveld GD (2021a) The fate of poly- and perfluoroalkyl substances in a marine food web influenced by land-based sources in the Norwegian Arctic. Environmental Science-Processes & Impacts 23:588–604

    Article  CAS  Google Scholar 

  • Ali AM, Sanden M, Higgins CP, Hale SE, Alarif WM, Al-Lihaibi SS, Rader EM, Langberg HA, Kallenborn R (2021b): Legacy and emerging per- and polyfluorinated alkyl substances (PFASs) in sediment and edible fish from the Eastern Red Sea. Environmental pollution (Barking, Essex : 1987) 280, 116935

  • Armstrong DL, Lozano N, Rice CP, Ramirez M, Torrents A (2016) Temporal trends of perfluoroalkyl substances in limed biosolids from a large municipal water resource recovery facility. J Environ Manage 165:88–95

    Article  CAS  Google Scholar 

  • Ateia M, Maroli A, Tharayil N, Karanfil T (2019) The overlooked short- and ultrashort-chain poly- and perfluorinated substances: a review. Chemosphere 220:866–882

    Article  CAS  Google Scholar 

  • ATSDR USDoHaHS (2009) Draft toxicological profile for perfluoroalkyls. In: Registry PHSAfTSaD (Hrsg.)

  • Backe WJ, Day TC, Field JA (2013a) Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater from US military bases by nonaqueous large-volume injection HPLC-MS/MS. Environ Sci Technol 47:5226–5234

    Article  CAS  Google Scholar 

  • Backe WJ, Day TC, Field JA (2013b) Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater from U.S. military bases by nonaqueous large-volume injection HPLC-MS/MS. Environ Sci Technol 47:5226–5234

    Article  CAS  Google Scholar 

  • Baduel C, Paxman CJ, Mueller JF (2015) Perfluoroalkyl substances in a firefighting training ground (FTG), distribution and potential future release. J Hazard Mater 296:46–53

    Article  CAS  Google Scholar 

  • Banzhaf S, Filipovic M, Lewis J, Sparrenbom CJ, Barthel R (2017) A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs). Ambio 46:335–346

    Article  CAS  Google Scholar 

  • Barzen-Hanson KA, Field JA (2015) Discovery and implications of C-2 and C-3 perfluoroalkyl sulfonates in aqueous film-forming foams and groundwater. Environ Sci Technol Lett 2:95–99

    Article  CAS  Google Scholar 

  • Barzen-Hanson KA, Roberts SC, Choyke S, Oetjen K, McAlees A, Riddell N, McCrindle R, Ferguson PL, Higgins CP, Field JA (2017) Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ Sci Technol 51:2047–2057

    Article  CAS  Google Scholar 

  • Boiteux V, Dauchy X, Rosin C, Munoz J-F (2012) National screening study on 10 perfluorinated compounds in raw and treated tap water in France. Arch Environ Contam Toxicol 63:1–12

    Article  CAS  Google Scholar 

  • Borthakur A, Cranmer BK, Dooley GP, Blotevogel J, Mahendra S, Mohanty SK (2021): Release of soil colloids during flow interruption increases the pore-water PFAS concentration in saturated soil. Environmental pollution (Barking, Essex : 1987) 286, 117297–117297

  • Braunig J, Baduel C, Heffernan A, Rotander A, Donaldson E, Mueller JF (2017) Fate and redistribution of perfluoroalkyl acids through AFFF-impacted groundwater. Sci Total Environ 596:360–368

    Article  Google Scholar 

  • Brusseau ML, Anderson RH, Guo B (2020): PFAS concentrations in soils: background levels versus contaminated sites. Science of the Total Environment 740

  • Brusseau ML, Van Glubt S (2019) The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces. Water Res 161:17–26

    Article  CAS  Google Scholar 

  • Buck RC, Korzeniowski SH, Laganis E, Adamsky F (2021): Identification and classification of commercially relevant per- and poly-fluoroalkyl substances (PFAS). Integrated environmental assessment and management

  • Buczynska AJ, Geypens B, Van Grieken R, De Wael K (2013) Stable carbon isotopic ratio measurement of polycyclic aromatic hydrocarbons as a tool for source identification and apportionment-a review of analytical methodologies. Talanta 105:435–450

    Article  CAS  Google Scholar 

  • Busch J, Ahrens L, Sturm R, Ebinghaus R (2010) Polyfluoroalkyl compounds in landfill leachates. Environ Pollut 158:1467–1471

    Article  CAS  Google Scholar 

  • Casson R, Chiang SYD (2018) Integrating total oxidizable precursor assay data to evaluate fate and transport of PFASs. Remediat J 28:71–87

    Article  Google Scholar 

  • Castiglioni S, Valsecchi S, Polesello S, Rusconi M, Melis M, Palmiotto M, Manenti A, Davoli E, Zuccato E (2015) Sources and fate of perfluorinated compounds in the aqueous environment and in drinking water of a highly urbanized and industrialized area in Italy. J Hazard Mater 282:51–60

    Article  CAS  Google Scholar 

  • Che QH, Su XS, Zheng SD, Li YF (2021): Interaction between surface water and groundwater in the Alluvial Plain (anqing section) of the lower Yangtze River Basin: environmental isotope evidence. Journal of Radioanalytical and Nuclear Chemistry

  • Chen S, Jiao XC, Gai N, Li XJ, Wang XC, Lu GH, Piao HT, Rao Z, Yang YL (2016) Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China. Environ Pollut 211:124–131

    Article  CAS  Google Scholar 

  • Chen C-E, Yang Y-Y, Zhao J-L, Liu Y-S, Hu L-X, Li B-B, Li C-L, Ying G-G (2021) legacy and alternative per- and polyfluoroalkyl substances (PFASs) in the West River and North River, south China: Occurrence, fate, spatio-temporal variations and potential sources. Chemosphere 283:131301

    Article  CAS  Google Scholar 

  • Chu S, Letcher RJ (2017) Side-chain fluorinated polymer surfactants in aquatic sediment and biosolid-augmented agricultural soil from the Great Lakes basin of North America. Sci Total Environ 607–608:262–270

    Article  Google Scholar 

  • Cong J, Chu C, Li Q-Q, Zhou Y, Min Qian Z, Dee Geiger S, Vaughn MG, Zeng X-W, Liu R-Q, Hu L-W, Yang B-Y, Chen G, Zeeshan M, Sun X, Xiang M, Dong G-H (2021) Associations of perfluorooctane sulfonate alternatives and serum lipids in Chinese adults. Environ Int 155:106596

    Article  CAS  Google Scholar 

  • Cook PG, Lamontagne S, Berhane D, Clark JF (2006): Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6. Water Resources Research 42

  • Cordner A, De La Rosa VY, Schaider LA, Rudel RA, Richter L, Brown P (2019) Guideline levels for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social factors. J Eposure Sci Environ Epidemiol 29:157–171

    Article  Google Scholar 

  • Costanza J, Abriola LM, Pennell KD (2020) Aqueous film-forming foams exhibit greater interfacial activity than PFOA, PFOS, or FOSA. Environ Sci Technol 54:13590–13597

    Article  CAS  Google Scholar 

  • Dauchy X, Boiteux V, Colin A, Hemard J, Bach C, Rosin C, Munoz J-F (2019a) Deep seepage of per- and polyfluoroalkyl substances through the soil of a firefighter training site and subsequent groundwater contamination. Chemosphere 214:729–737

    Article  CAS  Google Scholar 

  • Du D, Lu Y, Zhou Y, Li Q, Zhang M, Han G, Cui H, Jeppesen E (2021): Bioaccumulation, trophic transfer and biomagnification of perfluoroalkyl acids (PFAAs) in the marine food web of the South China Sea. Journal of Hazardous Materials 405

  • Dubocq F, Thanh W, Yeung LWY, Sjoberg V, Karrman A (2020) Characterization of the chemical contents of fluorinated and fluorine-free firefighting foams using a novel workflow combining nontarget screening and total fluorine analysis. Environ Sci Technol 54:245–254

    Article  CAS  Google Scholar 

  • Duong HT, Kadokami K, Shirasaka H, Hidaka R, Chau HTC, Kong LX, Nguyen TQ, Nguyen TT (2015) Occurrence of perfluoroalkyl acids in environmental waters in Vietnam. Chemosphere 122:115–124

    Article  CAS  Google Scholar 

  • East A, Anderson RH, Salice CJ (2021) Per- and polyfluoroalkyl substances (PFAS) in surface water near US Air Force bases: prioritizing individual chemicals and mixtures for toxicity testing and risk assessment. Environ Toxicol Chem 40:859–870

    Article  CAS  Google Scholar 

  • EC EC (2018): Additional tools review of the drinking water directive. 2018

  • EC EC (2020): Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption (recast)

  • ECOS (2019): California lowers PFAS notification levels, Initiates Regulatory Process

  • Eschauzier C, Haftka J, Stuyfzand PJ, de Voogt P (2010) Perfluorinated compounds in infiltrated river rhine water and infiltrated rainwater in coastal Dunes. Environ Sci Technol 44:7450–7455

    Article  CAS  Google Scholar 

  • Eschauzier C, Raat KJ, Stuyfzand PJ, De Voogt P (2013) Perfluorinated alkylated acids in groundwater and drinking water: identification, origin and mobility. Sci Total Environ 458:477–485

    Article  Google Scholar 

  • Famiyeh L, Chen K, Xu JS, Sun Y, Guo QJ, Wang CJ, Lv JG, Tang YT, Yu H, Snape C, He J (2021): A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons. Science of the Total Environment 789

  • Fan X, Bao Y, Mumtaz M, Huang J, Yu G (2021): Determination of total oxidizable precursors in foam surfactants and foam contaminated water based on UV-activated persulfate oxidation. Science of the Total Environment 763

  • Ferrey ML, Wilson JT, Adair C, Su C, Fine DD, Liu X, Washington JW (2012) Behavior and fate of PFOA and PFOS in sandy aquifer sediment. Ground Water Monit Rem 32:63–71

    Article  CAS  Google Scholar 

  • Field JA, Seow J (2017) Properties, occurrence, and fate of fluorotelomer sulfonates. Crit Rev Environ Sci Technol 47:643–691

    Article  CAS  Google Scholar 

  • Filipovic M, Laudon H, McLachlan MS, Berger U (2015a) Mass balance of perfluorinated alkyl acids in a pristine boreal catchment. Environ Sci Technol 49:12127–12135

    Article  CAS  Google Scholar 

  • Filipovic M, Woldegiorgis A, Norström K, Bibi M, Lindberg M, Österås A-H (2015b) Historical usage of aqueous film forming foam: a case study of the widespread distribution of perfluoroalkyl acids from a military airport to groundwater, lakes, soils and fish. Chemosphere 129:39–45

    Article  CAS  Google Scholar 

  • Fujii Y, Harada KH, Koizumi A (2013) Occurrence of perfluorinated carboxylic acids (PFCAs) in personal care products and compounding agents. Chemosphere 93:538–544

    Article  CAS  Google Scholar 

  • Gaballah S, Swank A, Sobus J, Howey XM, Schmid J, Catron T, McCord J, Hines E, Strynar M, Tal T (2020) Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and Other PFAS. Environ Health Perspect 128:047005

    Article  CAS  Google Scholar 

  • Gallen C, Drage D, Kaserzon S, Baduel C, Gallen M, Banks A, Broomhall S, Mueller JF (2016) Occurrence and distribution of brominated flame retardants and perfluoroalkyl substances in Australian landfill leachate and biosolids. J Hazard Mater 312:55–64

    Article  CAS  Google Scholar 

  • Galloway JE, Moreno AVP, Lindstrom AB, Strynar MJ, Newton S, May AA, Weavers LK (2020) Evidence of air dispersion: HFPO–DA and PFOA in Ohio and West Virginia surface water and soil near a fluoropolymer production facility. Environ Sci Technol 54:7175–7184

    Article  CAS  Google Scholar 

  • Gao Y, Liang Y, Gao K, Wang Y, Wang C, Fu J, Wang Y, Jiang G, Jiang Y (2019) levels, spatial distribution and isomer profiles of perfluoroalkyl acids in soil, groundwater and tap water around a manufactory in China. Chemosphere 227:305–314

    Article  CAS  Google Scholar 

  • Gao L, Liu J, Bao K, Chen N, Meng B (2020a) Multicompartment occurrence and partitioning of alternative and legacy per- and polyfluoroalkyl substances in an impacted river in China. Sci Total Environ 729:138753

    Article  CAS  Google Scholar 

  • Gao LJ, Liu JL, Bao K, Chen NN, Meng B (2020b): Multicompartment occurrence and partitioning of alternative and legacy per- and polyfluoroalkyl substances in an impacted river in China. Science of the Total Environment 729

  • Gaona J, Meinikmann K, Lewandowski J (2019) Identification of groundwater exfiltration, interflow discharge, and hyporheic exchange flows by fibre optic distributed temperature sensing supported by electromagnetic induction geophysics. Hydrol Process 33:1390–1402

    Article  Google Scholar 

  • Garg S, Kumar P, Mishra V, Guijt R, Singh P, Dumee LF, Sharma RS (2020): A review on the sources, occurrence and health risks of per-/poly-fluoroalkyl substances (PFAS) arising from the manufacture and disposal of electric and electronic products. Journal of Water Process Engineering 38

  • Gebbink WA, van Leeuwen SPJ (2020) Environmental contamination and human exposure to PFASs near a fluorochemical production plant: review of historic and current PFOA and GenX contamination in the Netherlands. Environ Int 137:105583

    Article  CAS  Google Scholar 

  • Gobelius L, Lewis J, Ahrens L (2017) Plant uptake of per- and polyfluoroalkyl substances at a contaminated fire training facility to evaluate the phytoremediation potential of various plant species. Environ Sci Technol 51:12602–12610

    Article  CAS  Google Scholar 

  • Gobelius L, Hedlund J, Duerig W, Troger R, Lilja K, Wiberg K, Ahrens L (2018) Per- and polyfluoroalkyl substances in Swedish groundwater and surface water: implications for environmental quality standards and drinking water guidelines. Environ Sci Technol 52:4340–4349

    Article  CAS  Google Scholar 

  • Goeckener B, Fliedner A, Ruedel H, Fettig I, Koschorreck J (2021): Exploring unknown per- and polyfluoroalkyl substances in the German environment - the total oxidizable precursor assay as helpful tool in research and regulation. Science of the Total Environment 782

  • Goodrow SM, Ruppel B, Lippincott RL, Post GB, Procopio NA (2020): Investigation of levels of perfluoroalkyl substances in surface water, sediment and fish tissue in New Jersey, USA. Science of the Total Environment 729

  • Hamid H, Li LY, Grace JR (2020a) Aerobic biotransformation of fluorotelomer compounds in landfill leachate-sediment. Sci Total Environ 713:136547

    Article  CAS  Google Scholar 

  • Hamid H, Li LY, Grace JR (2020b) Formation of perfluorocarboxylic acids from 6:2 fluorotelomer sulfonate (6:2 FTS) in landfill leachate: role of microbial communities. Environ Pollut 259:113835

    Article  CAS  Google Scholar 

  • Harding-Marjanovic KC, Houtz EF, Yi S, Field JA, Sedlak DL, Alvarez-Cohen L (2015) Aerobic Biotransformation of fluorotelomer thioether amido sulfonate (Lodyne) in AFFF-amended microcosms. Environ Sci Technol 49:7666–7674

    Article  CAS  Google Scholar 

  • Harrad S, Drage DS, Sharkey M, Berresheim H (2019) Brominated flame retardants and perfluoroalkyl substances in landfill leachate from Ireland. Sci Total Environ 695:133810

    Article  CAS  Google Scholar 

  • Harrad S, Drage DS, Sharkey M, Berresheim H (2020): Perfluoroalkyl substances and brominated flame retardants in landfill-related air, soil, and groundwater from Ireland. Science of the Total Environment 705

  • Hepburn E, Madden C, Szabo D, Coggan TL, Clarke B, Currell M (2019a) Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Environ Pollut 248:101–113

    Article  CAS  Google Scholar 

  • Hepburn E, Northway A, Bekele D, Currell M (2019b) Incorporating perfluoroalkyl acids (PFAA) into a geochemical index for improved delineation of legacy landfill impacts on groundwater. Sci Total Environ 666:1198–1208

    Article  CAS  Google Scholar 

  • Higgins CP, Luthy RG (2006) Sorption of perfluorinated surfactants on sediments. Environ Sci Technol 40:7251–7256

    Article  CAS  Google Scholar 

  • Høisæter Å, Pfaff A, Breedveld GD (2019) Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions. J Contam Hydrol 222:112–122

    Article  Google Scholar 

  • Houtz EF, Higgins CP, Field JA, Sedlak DL (2013) Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Environ Sci Technol 47:8187–8195

    Article  CAS  Google Scholar 

  • Hunter Anderson R, Adamson DT, Stroo HF (2019) Partitioning of poly- and perfluoroalkyl substances from soil to groundwater within aqueous film-forming foam source zones. J Contam Hydrol 220:59–65

    Article  CAS  Google Scholar 

  • Inspectorate DW (2009): Guidance on the water supply (water quality) regulations 20001 specific to PFOS (perfluorooctane sulphonate) and PFOA (perfluorooctanoic acid) concentrations in drinking water, UK

  • Ivdra N, Fischer A, Herrero-Martin S, Giunta T, Bonifacie M, Richnow H-H (2017) Carbon, hydrogen and chlorine stable isotope fingerprinting for forensic investigations of hexachlorocyclohexanes. Environ Sci Technol 51:446–454

    Article  CAS  Google Scholar 

  • Janda J, Noedler K, Scheurer M, Happel O, Nuerenberg G, Zwiener C, Lange FT (2019) Closing the gap - inclusion of ultrashort-chain perfluoroalkyl carboxylic acids in the total oxidizable precursor (TOP) assay protocol. Environmental Science-Processes & Impacts 21:1926–1935

    Article  CAS  Google Scholar 

  • Jian J-M, Guo Y, Zeng L, Liu L-Y, Lu X, Wang F, Zeng EY (2017) Global distribution of perfluorochemicals (PFCs) in potential human exposure source-A review. Environ Int 108:51–62

    Article  CAS  Google Scholar 

  • Joerss H, Schramm T-R, Sun L, Guo C, Tang J, Ebinghaus R (2020a) Per- and polyfluoroalkyl substances in Chinese and German river water – point source- and country-specific fingerprints including unknown precursors. Environ Pollut 267:115567

    Article  CAS  Google Scholar 

  • Joerss H, Xie Z, Wagner CC, Von Appen W-J, Sunderland EM, Ebinghaus R (2020c) Transport of legacy perfluoroalkyl substances and the replacement compound HFPO-DA through the Atlantic Gateway to the Arctic Ocean-is the Arctic a sink or a source? Environ Sci Technol 54:9958–9967

    Article  CAS  Google Scholar 

  • Joerss H, Schramm TR, Sun LT, Guo C, Tang JH, Ebinghaus R (2020b): Per- and polyfluoroalkyl substances in Chinese and German river water - Point source- and country-specific fingerprints including unknown precursors. Environmental Pollution 267

  • Kaboré HA, Sung Vo D, Munoz G, Meite L, Desrosiers M, Liu J, Sory TK, Sauve S (2018) Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. Sci Total Environ 616:1089–1100

    Article  Google Scholar 

  • Kabore HA, Sung Vo D, Munoz G, Meite L, Desrosiers M, Liu J, Sory TK, Sauve S (2018) Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. Sci Total Environ 616:1089–1100

    Article  Google Scholar 

  • Karan S, Jacobsen M, Kazmierczak J, Reyna-Gutierrez JA, Breum T, Engesgaard P (2021): Numerical Representation of groundwater-surface water exchange and the effect on streamflow contribution estimates. Water 13

  • Kim S-K, Kannan K (2007) Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of Urban Lakes. Environ Sci Technol 41:8328–8334

    Article  CAS  Google Scholar 

  • Kummel S, Starke R, Chen G, Musat F, Richnow HH, Vogt C (2016) Hydrogen isotope fractionation as a tool to identify aerobic and anaerobic PAH biodegradation. Environ Sci Technol 50:3091–3100

    Article  Google Scholar 

  • Kuroda K, Murakami M, Oguma K, Takada H, Takizawa S (2014a) Investigating sources and pathways of perfluoroalkyl acids (PFAAs) in aquifers in Tokyo using multiple tracers. Sci Total Environ 488:51–60

    Article  Google Scholar 

  • Kuroda K, Murakami M, Oguma K, Takada H, Takizawa S (2014b) Investigating sources and pathways of perfluoroalkyl acids (PFAAs) in aquifers in Tokyo using multiple tracers. Sci Total Environ 488–489:51–60

    Article  Google Scholar 

  • Langberg HA, Breedveld GD, Slinde GA, Gronning HM, Hoisaeter A, Jartun M, Rundberget T, Jenssen BM, Hale SE (2020) Fluorinated precursor compounds in sediments as a source of perfluorinated alkyl acids (PFAA) to biota. Environ Sci Technol 54:13077–13089

    Article  CAS  Google Scholar 

  • Langping W, Moses S, Yaqing L, Renpenning J, Richnow HH (2019) A concept for studying the transformation reaction of hexachlorocyclohexanes in food webs using multi-element compound-specific isotope analysis. Anal Chim Acta 1064:56–64

    Article  Google Scholar 

  • Lapworth DJ, Das P, Shaw A, Mukherjee A, Civil W, Petersen JO, Gooddy DC, Wakefield O, Finlayson A, Krishan G, Sengupta P, MacDonald AM (2018) Deep urban groundwater vulnerability in India revealed through the use of emerging organic contaminants and residence time tracers. Environ Pollut 240:938–949

    Article  CAS  Google Scholar 

  • Letcher RJ, Chu S, Smyth S-A (2020) Side-chain fluorinated polymer surfactants in biosolids from wastewater treatment plants. J Hazard Mater 388:122044

    Article  CAS  Google Scholar 

  • Li XH, Shang XC, Luo TL, Du X, Wang Y, Xie Q, Matsuura N, Chen JW, Kadokami K (2016) Screening and health risk of organic micropollutants in rural groundwater of Liaodong Peninsula, China. Environ Pollut 218:739–748

    Article  CAS  Google Scholar 

  • Li YN, Li JF, Zhang LF, Huang ZP, Liu YQ, Wu N, He JH, Zhang ZZ, Zhang Y, Niu ZG (2019) Perfluoroalkyl acids in drinking water of China in 2017: distribution characteristics, influencing factors and potential risks. Environ Int 123:87–95

    Article  CAS  Google Scholar 

  • Li Z, Lyu X, Gao B, Xu H, Wu J, Sun Y (2021) Effects of ionic strength and cation type on the transport of perfluorooctanoic acid (PFOA) in unsaturated sand porous media. J Hazard Mater 403:123688

    Article  CAS  Google Scholar 

  • Li B-B, Hu L-X, Yang Y-Y, Wang T-T, Liu C, Ying G-G (2020a): Contamination profiles and health risks of PFASs in groundwater of the Maozhou River basin. Environmental Pollution 260

  • Li B-B, Hu L-X, Yang Y-Y, Wang T-T, Liu C, Ying G-G (2020b): Contamination profiles and health risks of PFASs in groundwater of the Maozhou River basin. Environmental pollution (Barking, Essex : 1987) 260, 113996–113996

  • Li Y, Yu N, Du L, Shi W, Yu H, Song M, Wei S (2020c): Transplacental transfer of per- and polyfluoroalkyl substances identified in paired maternal and cord sera using suspect and non-target screening. Environmental science & technology

  • Lin Y, Ruan T, Liu A, Jiang G (2017) Identification of novel hydrogen-substituted polyfluoroalkyl ether sulfonates in environmental matrices near metal-plating facilities. Environ Sci Technol 51:11588–11596

    Article  CAS  Google Scholar 

  • Lin Y, Jiang J-J, Rodenburg LA, Cai M, Wu Z, Ke H, Chitsaz M (2020): Perfluoroalkyl substances in sediments from the Bering Sea to the western Arctic: Source and pathway analysis. Environment International 139

  • Lindstrom AB, Strynar MJ, Delinsky AD, Nakayama SF, McMillan L, Libelo EL, Neill M, Thomas L (2011) Application of WWTP biosolids and resulting perfluorinated compound contamination of surface and well water in Decatur, Alabama, USA. Environ Sci Technol 45:8015–8021

    Article  CAS  Google Scholar 

  • Liu J, Mejia Avendaño S (2013) Microbial degradation of polyfluoroalkyl chemicals in the environment: a review. Environ Int 61:98–114

    Article  CAS  Google Scholar 

  • Liu Z, Lu Y, Wang T, Wang P, Li Q, Johnson AC, Sarvajayakesavalu S, Sweetman AJ (2016) Risk assessment and source identification of perfluoroalkyl acids in surface and ground water: spatial distribution around a mega-fluorochemical industrial park, China. Environ Int 91:69–77

    Article  CAS  Google Scholar 

  • Liu YQ, Bashir S, Stollberg R, Trabitzsch R, Weiss H, Paschke H, Nijenhuis I, Richnow HH (2017) Compound specific and enantioselective stable isotope analysis as tools to monitor transformation of hexachlorocyclohexane (HCH) in a complex aquifer system. Environ Sci Technol 51:8909–8916

    Article  CAS  Google Scholar 

  • Liu Y, Ma L, Yang Q, Li G, Zhang F (2018a) Occurrence and spatial distribution of perfluorinated compounds in groundwater receiving reclaimed water through river bank infiltration. Chemosphere 211:1203–1211

    Article  CAS  Google Scholar 

  • Liu Y, Qian M, Ma X, Zhu L, Martin JW (2018b) Nontarget mass spectrometry reveals new perfluoroalkyl substances in fish from the Yangtze River and Tangxun Lake, China. Environ Sci Technol 52:5830–5840

    Article  CAS  Google Scholar 

  • Liu W-X, He W, Wu J-Y, Wu W-J, Xu F-L (2019a) Effects of fluorescent dissolved organic matters (FDOMs) on perfluoroalkyl acids (PFAAs) in lake and river water. Sci Total Environ 666:598–607

    Article  CAS  Google Scholar 

  • Liu S, Junaid M, Zhong W, Zhu Y, Xu N (2020a) A sensitive method for simultaneous determination of 12 classes of per- and polyfluoroalkyl substances (PFASs) in groundwater by ultrahigh performance liquid chromatography coupled with quadrupole orbitrap high resolution mass spectrometry. Chemosphere 251:126327–126327

    Article  CAS  Google Scholar 

  • Liu Y, Li X, Wang X, Qiao X, Hao S, Lu J, Duan X, Dionysiou DD, Zheng B (2019b): Contamination profiles of perfluoroalkyl substances (pfas) in groundwater in the alluvial-pluvial plain of Hutuo River, China. Water 11

  • Liu YQ, Kummel S, Yao J, Nijenhuis I, Richnow HH (2020b): Dual C-Cl isotope analysis for characterizing the anaerobic transformation of alpha, beta, gamma, and delta-hexachlorocyclohexane in contaminated aquifers. Water Research 184

  • Liu H, Pan Y, Jin S, Sun X, Jiang Y, Wang Y, Ghassabian A, Li Y, Xia W, Cui Q, Zhang B, Zhou A, Dai J, Xu S (2021a): Associations between six common per- and polyfluoroalkyl substances and estrogens in neonates of China. Journal of Hazardous Materials 407

  • Liu HN, Hu WL, Li X, Hu FW, Liu YF, Xie TH, Liu B, Xi YN, Su Z, Zhang C (2022): Effects of perfluoroalkyl substances on root and rhizosphere bacteria: phytotoxicity, phyto-microbial remediation, risk assessment. Chemosphere 289

  • Loos R, Locoro G, Comero S, Contini S, Schwesig D, Werres F, Balsaa P, Gans O, Weiss S, Blaha L, Bolchi M, Gawlik BM (2010) Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res 44:4115–4126

    Article  CAS  Google Scholar 

  • Lu G-H, Jiao X-C, Piao H-T, Wang X-C, Chen S, Tan K-Y, Gai N, Yin X-C, Yang Y-L, Pan J (2018) The Extent of the impact of a fluorochemical industrial park in Eastern China on adjacent rural areas. Arch Environ Contam Toxicol 74:484–491

    Article  CAS  Google Scholar 

  • Lu Y, Meng LY, Ma DH, Cao HM, Liang Y, Liu HW, Wang YW, Jiang GB (2021): The occurrence of PFAS in human placenta and their binding abilities to human serum albumin and organic anion transporter 4. Environmental Pollution 273

  • Luo K, Liu X, Nian M, Wang Y, Qiu J, Yu H, Chen X, Zhang J (2021): Environmental exposure to per- and polyfluoroalkyl substances mixture and male reproductive hormones. Environment International 152

  • Lyu X, Liu X, Sun Y, Ji R, Gao B, Wu J (2019) Transport and retention of perfluorooctanoic acid (PFOA) in natural soils: importance of soil organic matter and mineral contents, and solution ionic strength. J Contam Hydrol 225:103477

    Article  CAS  Google Scholar 

  • Maclnnis JJ, Lehnherr I, Muir DCG, St Pierre KA, St Louis VL, Spencer C, De Silva AO (2019) Fate and transport of perfluoroalkyl substances from snowpacks into a lake in the high arctic of Canada. Environ Sci Technol 53:10753–10762

    Article  Google Scholar 

  • Mahinroosta R, Senevirathna L (2020) A review of the emerging treatment technologies for PFAS contaminated soils. J Environ Manage 255:109896

    Article  CAS  Google Scholar 

  • Martin D, Munoz G, Mejia-Avendano S, Duy SV, Yao Y, Volchek K, Brown CE, Liu J, Sauve S (2019) Zwitterionic, cationic, and anionic perfluoroalkyl and polyfluoroalkyl substances integrated into total oxidizable precursor assay of contaminated groundwater. Talanta 195:533–542

    Article  CAS  Google Scholar 

  • Masoner JR, Kolpin DW, Cozzarelli IM, Smalling KL, Bolyard SC, Field JA, Furlong ET, Gray JL, Lozinski D, Reinhart D, Rodowa A, Bradley PM (2020) Landfill leachate contributes per-/poly-fluoroalkyl substances (PFAS) and pharmaceuticals to municipal wastewater. Environ Sci: Water Res Technol 6:1300–1311

    CAS  Google Scholar 

  • Mazeas L, Budzinski H (2001) Polycyclic aromatic hydrocarbon (13)C/(12)C ratio measurement in petroleum and marine sediments - application to standard reference materials and a sediment suspected of contamination from the Erika oil spill. J Chromatogr A 923:165–176

    Article  CAS  Google Scholar 

  • McCance W, Jones OAH, Edwards M, Surapaneni A, Chadalavada S, Currell M (2018) Contaminants of emerging concern as novel groundwater tracers for delineating wastewater impacts in urban and peri-urban areas. Water Res 146:118–133

    Article  CAS  Google Scholar 

  • McCord J, Strynar M (2019): Identifying per- and polyfluorinated chemical species with a combined targeted and non-targeted-screening high-resolution mass spectrometry workflow. Jove-Journal of Visualized Experiments

  • McGuire ME, Schaefer C, Richards T, Backe WJ, Field JA, Houtz E, Sedlak DL, Guelfo JL, Wunsch A, Higgins CP (2014) Evidence of remediation-induced alteration of subsurface poly- and perfluoroalkyl substance distribution at a former firefighter training area. Environ Sci Technol 48:6644–6652

    Article  CAS  Google Scholar 

  • MDH (2017 and 2019): Safe levels of PFAS in drinking water. In: Health MDo (Hrsg.)

  • Moody CA, Field JA (1999) Determination of perfluorocarboxylates in groundwater impacted by fire-fighting activity. Environ Sci Technol 33:2800–2806

    Article  CAS  Google Scholar 

  • Moody CA, Hebert GN, Strauss SH, Field JA (2003) Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA. J Environ Monit 5:341–345

    Article  CAS  Google Scholar 

  • Munoz G, Labadie P, Botta F, Lestremau F, Lopez B, Geneste E, Pardon P, Devier M-H, Budzinski H (2017) Occurrence survey and spatial distribution of perfluoroalkyl and polyfluoroalkyl surfactants in groundwater, surface water, and sediments from tropical environments. Sci Total Environ 607:243–252

    Article  Google Scholar 

  • Munoz G, Michaud AM, Liu M, Vo Duy S, Montenach D, Resseguier C, Watteau F, Sappin-Didier V, Feder F, Morvan T, Houot S, Desrosiers M, Liu J, Sauvé S (2021): Target and nontarget screening of PFAS in biosolids, composts, and other organic waste products for land application in France. Environmental Science & Technology

  • Murakami M, Kuroda K, Sato N, Fukushi T, Takizawa S, Takada H (2009a) Groundwater pollution by perfluorinated surfactants in Tokyo. Environ Sci Technol 43:3480–3486

    Article  CAS  Google Scholar 

  • Murakami M, Shinohara H, Takada H (2009b) Evaluation of wastewater and street runoff as sources of perfluorinated surfactants (PFSs). Chemosphere 74:487–493

    Article  CAS  Google Scholar 

  • Murakami M, Nishikoori H, Sakai H, Oguma K, Takada H, Takizawa S (2013) Formation of perfluorinated surfactants from precursors by indigenous microorganisms in groundwater. Chemosphere 93:140–145

    Article  CAS  Google Scholar 

  • Nascimento RA, Nunoo DBO, Bizkarguenaga E, Schultes L, Zabaleta I, Benskin JP, Spano S, Leonel J (2018) Sulfluramid use in Brazilian agriculture: a source of per- and polyfluoroalkyl substances (PFASs) to the environment. Environ Pollut 242:1436–1443

    Article  CAS  Google Scholar 

  • Nguyen TMH, Bräunig J, Thompson K, Thompson J, Kabiri S, Navarro DA, Kookana RS, Grimison C, Barnes CM, Higgins CP, McLaughlin MJ, Mueller JF (2020) Influences of chemical properties, soil properties, and solution pH on soil–water partitioning coefficients of per- and polyfluoroalkyl substances (PFASs). Environ Sci Technol 54:15883–15892

    Article  CAS  Google Scholar 

  • NHDES NHDoES (2020) Update on New Hampshire PFAS Drinking Water Standards (MCLs)

  • Oliaei F, Kriens D, Weber R, Watson A (2013) PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA). Environ Sci Pollut Res 20:1977–1992

    Article  CAS  Google Scholar 

  • Pan Y, Zhang H, Cui Q, Sheng N, Yeung LWY, Sun Y, Guo Y, Dai J (2018) Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water. Environ Sci Technol 52:7621–7629

    Article  CAS  Google Scholar 

  • Pellizzaro A, Zaggia A, Fant M, Conte L, Falletti L (2018) Identification and quantification of linear and branched isomers of perfluorooctanoic and perfluorooctane sulfonic acids in contaminated groundwater in the veneto region. J Chromatogr A 1533:143–154

    Article  CAS  Google Scholar 

  • Petre M-A, Genereux DP, Koropeckyj-Cox L, Knappe DRU, Duboscq S, Gilmore TE, Hopkins ZR (2021) Per- and polyfluoroalkyl substance (PFAS) Transport from groundwater to streams near a PFAS manufacturing facility in North Carolina, USA. Environ Sci Technol 55:5848–5856

    Article  CAS  Google Scholar 

  • Pignotti E, Farre M, Barcelo D, Dinelli E (2017) Occurrence and distribution of six selected endocrine disrupting compounds in surface- and groundwaters of the Romagna area (North Italy). Environ Sci Pollut Res 24:21153–21167

    Article  CAS  Google Scholar 

  • Place BJ, Field JA (2012) Identification of novel fluorochemicals in aqueous film-forming foams used by the US military. Environ Sci Technol 46:7120–7127

    Article  CAS  Google Scholar 

  • Post GB, Louis JB, Lippincott RL, Procopio NA (2013) Occurrence of perfluorinated compounds in raw water from New Jersey public drinking water systems. Environ Sci Technol 47:13266–13275

    Article  CAS  Google Scholar 

  • Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40:32–44

    Article  CAS  Google Scholar 

  • Qi YJ, Huo SL, Hu SB, Xi BD, Su J, Tang ZW (2016): Identification, characterization, and human health risk assessment of perfluorinated compounds in groundwater from a suburb of Tianjin, China. Environmental Earth Sciences 75

  • Qian YG, Chen K, Liu YQ, Li JY (2019): Assessment of hexachlorcyclohexane biodegradation in contaminated soil by compound-specific stable isotope analysis. Environmental Pollution 254

  • Qiao X, Jiao L, Zhang X, Li X, Hao S, Kong M, Liu Y (2020): Contamination profiles and risk assessment of per- and polyfluoroalkyl substances in groundwater in China. Environmental Monitoring and Assessment 192

  • Richnow HH, Annweiler E, Michaelis W, Meckenstock RU (2003) Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation. J Contam Hydrol 65:101–120

    Article  CAS  Google Scholar 

  • Rowe RK, Barakat FB (2021) Modelling the transport of PFOS from single lined municipal solid waste landfill. Comput Geotech 137:104280

    Article  Google Scholar 

  • Ruan T, Jiang G (2017) Analytical methodology for identification of novel per- and polyfluoroalkyl substances in the environment. Trac-Trends in Analytical Chemistry 95:122–131

    Article  CAS  Google Scholar 

  • Sadat-Noori M, Anibas C, Andersen MS, Glamore W (2021): A comparison of radon, heat tracer and head gradient methods to quantify surface water - groundwater exchange in a tidal wetland (Kooragang Island, Newcastle, Australia). Journal of Hydrology 598

  • Sammut G, Sinagra E, Sapiano M, Helmus R, de Voogt P (2019) Perfluoroalkyl substances in the Maltese environment - (II) sediments, soils and groundwater. Sci Total Environ 682:180–189

    Article  CAS  Google Scholar 

  • Schaider LA, Ackerman JM, Rudel RA (2016) Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer. Sci Total Environ 547:470–481

    Article  CAS  Google Scholar 

  • Scher DP, Kelly JE, Huset CA, Barry KM, Hoffbeck RW, Yingling VL, Messing RB (2018) Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water. Chemosphere 196:548–555

    Article  CAS  Google Scholar 

  • Schilling IE, Hess R, Bolotin J, Lal R, Hofstetter TB, Kohler HPE (2019) Kinetic isotope effects of the enzymatic transformation of gamma-hexachlorocyclohexane by the lindane dehydrochlorinase variants LinA1 and LinA2. Environ Sci Technol 53:2353–2363

    Article  CAS  Google Scholar 

  • Schroeder T, Bond D, Foley J (2021) PFAS soil and groundwater contamination via industrial airborne emission and land deposition in SW Vermont and Eastern New York State, USA. Environmental Science-Processes & Impacts 23:291–301

    Article  CAS  Google Scholar 

  • Schultz MM, Barofsky DF, Field JA (2004) Quantitative Determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Environ Sci Technol 38:1828–1835

    Article  CAS  Google Scholar 

  • Schulz K, Silva MR, Klaper R (2020) Distribution and effects of branched versus linear isomers of PFOA, PFOS, and PFHxS: a review of recent literature. Sci Total Environ 733:139186

    Article  CAS  Google Scholar 

  • SFA SFA (2020): PFAS in drinking water and self-caught fish - risk management. In: Agency SF (Hrsg.)

  • Shan G, Xiang Q, Feng X, Wu W, Yang L, Zhu L (2021) Occurrence and sources of per- and polyfluoroalkyl substances in the ice-melting lakes of Larsemann Hills, East Antarctica. Sci Total Environ 781:146747

    Article  CAS  Google Scholar 

  • Sharma BM, Bharat GK, Tayal S, Larssen T, Becanova J, Karaskova P, Whitehead PG, Futter MN, Butterfield D, Nizzetto L (2016) Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. Environ Pollut 208:704–713

    Article  CAS  Google Scholar 

  • Sharp S, Sardina P, Metzeling L, McKenzie R, Leahy P, Menkhorst P, Hinwood A (2021) Per- and polyfluoroalkyl substances in ducks and the relationship with concentrations in water, sediment, and soil. Environ Toxicol Chem 40:846–858

    Article  CAS  Google Scholar 

  • Shi GH, Xie Y, Guo Y, Dai JY (2018) 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), a novel perfluorooctane sulfonate alternative, induced developmental toxicity in zebrafish embryos. Aquat Toxicol 195:24–32

    Article  CAS  Google Scholar 

  • Shimizu MS, Mott R, Potter A, Zhou J, Baumann K, Surratt JD, Turpin B, Avery GB, Harfmann J, Kieber RJ, Mead RN, Skrabal SA, Willey JD (2021) Atmospheric deposition and annual flux of legacy perfluoroalkyl substances and replacement perfluoroalkyl ether carboxylic acids in Wilmington, NC, USA. Environ Sci Technol Lett 8:366–372

    Article  CAS  Google Scholar 

  • Shiwaku Y, Lee P, Thepaksorn P, Zheng B, Koizumi A, Harada KH (2016) Spatial and temporal trends in perfluorooctanoic and perfluorohexanoic acid in well, surface, and tap water around a fluoropolymer plant in Osaka, Japan. Chemosphere 164:603–610

    Article  CAS  Google Scholar 

  • Silva JAK, Martin WA, McCray JE (2021) Air-water interfacial adsorption coefficients for PFAS when present as a multi-component mixture. J Contam Hydrol 236:103731

    Article  CAS  Google Scholar 

  • Silva JAK, Martin WA, McCray JE (2020): Air-water interfacial adsorption coefficients for PFAS when present as a multi-component mixture. J Contam Hydrol, 103731

  • Sim W, Park H, Yoon JK, Kim JI, Oh JE (2021): Characteristic distribution patterns of perfluoroalkyl substances in soils according to land-use types. Chemosphere 276

  • Sima MW, Jaffe PR (2020): A critical review of modeling Poly- and Perfluoroalkyl Substances (PFAS) in the soil-water environment. Sci Total Environ, 143793

  • Soechtig S, Seifert J (2018): The devil we know

  • Song X, Vestergren R, Shi Y, Huang J, Cai Y (2018) Emissions, transport, and fate of emerging per- and polyfluoroalkyl substances from one of the major fluoropolymer manufacturing facilities in China. Environ Sci Technol 52:9694–9703

    Article  CAS  Google Scholar 

  • Song XH, Fang YL, Bao J, Ren HY, Duan ZR, Perkins W, Zhou HF, Hou ZS, Chen YX, Scheibe T (2021): Scale-dependent spatial variabilities of hydrological exchange flows and transit time in a large regulated river. Journal of Hydrology 598

  • Steffens SD, Cook EK, Sedlak DL, Alvarez-Cohen L (2021) Under-reporting potential of perfluorooctanesulfonic acid (PFOS) under high-ionic strength conditions. Environ Sci Technol Lett 8:1032–1037

    Article  CAS  Google Scholar 

  • Stoiber T, Evans S, Naidenko OV (2020) Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. Chemosphere 260:127659

    Article  CAS  Google Scholar 

  • Sun X, Bernard-Jannin L, Garneau C, Volk M, Arnold JG, Srinivasan R, Sauvage S, Sanchez-Perez JM (2016) Improved simulation of river water and groundwater exchange in an alluvial plain using the SWAT model. Hydrol Process 30:187–202

    Article  Google Scholar 

  • Sun R, Wu M, Tang L, Li J, Qian Z, Han T, Xu G (2018) Perfluorinated compounds in surface waters of Shanghai, China: source analysis and risk assessment. Ecotoxicol Environ Saf 149:88–95

    Article  CAS  Google Scholar 

  • Sutton JE, Screaton EJ, Martin JB (2015) Insights on surface-water/groundwater exchange in the upper Floridan aquifer, north-central Florida (USA), from streamflow data and numerical modeling. Hydrogeol J 23:305–317

    Article  Google Scholar 

  • Szabo D, Coggan TL, Robson TC, Currell M, Clarke BO (2018a) Investigating recycled water use as a diffuse source of per- and polyfluoroalkyl substances (PFASs) to groundwater in Melbourne, Australia. Sci Total Environ 644:1409–1417

    Article  CAS  Google Scholar 

  • Tan K-Y, Lu G-H, Yuan X, Zheng Y, Shao P-W, Cai J-Y, Zhao Y-R, Zhu X-H, Yang Y-L (2018) Perfluoroalkyl substances in water from the yangtze river and its tributaries at the dividing point between the middle and lower reaches. Bull Environ Contam Toxicol 101:598–603

    Article  CAS  Google Scholar 

  • Taniyasu S, Yamashita N, Moon H-B, Kwok KY, Lam PKS, Horii Y, Petrick G, Kannan K (2013) Does wet precipitation represent local and regional atmospheric transportation by perfluorinated alkyl substances? Environ Int 55:25–32

    Article  CAS  Google Scholar 

  • Thi Minh Hong N, Braunig J, Thompson K, Thompson J, Kabiri S, Navarro DA, Kookana RS, Grimison C, Barnes CM, Higgins CP, McLaughlin MJ, Mueller JF (2020) Influences of chemical properties, soil properties, and solution pH on soil-water partitioning coefficients of per- and polyfluoroalkyl substances (PFASs). Environ Sci Technol 54:15883–15892

    Article  Google Scholar 

  • USEPA (2016): Drinking Water Health Advisories for PFOA and PFOS

  • USEPA (2019): EPA Releases PFAS Groundwater Guidance for Federal Cleanup Programs, Fulfilling PFAS Action Plan Commitment

  • Venkatesan AK, Halden RU (2013) National inventory of perfluoroalkyl substances in archived U.S. biosolids from the 2001 EPA National Sewage Sludge Survey. J Hazard Mater 252–253:413–418

    Article  Google Scholar 

  • Vughs D, Baken KA, Dingemans MML, de Voogt P (2019) The determination of two emerging perfluoroalkyl substances and related halogenated sulfonic acids and their significance for the drinking water supply chain. Environmental Science-Processes & Impacts 21:1899–1907

    Article  CAS  Google Scholar 

  • Wang P, Lu Y, Wang T, Zhu Z, Li Q, Meng J, Su H, Johnson AC, Sweetman AJ (2016) Coupled production and emission of short chain perfluoroalkyl acids from a fast developing fluorochemical industry: evidence from yearly and seasonal monitoring in Daling River Basin, China. Environ Pollut 218:1234–1244

    Article  CAS  Google Scholar 

  • Wang S, Lin X, Li Q, Li Y, Yamazaki E, Yamashita N, Wang X (2022) Particle size distribution, wet deposition and scavenging effect of per- and polyfluoroalkyl substances (PFASs) in the atmosphere from a subtropical city of China. Sci Total Environ 823:153528

    Article  CAS  Google Scholar 

  • Washington JW, Yoo H, Ellington JJ, Jenkins TM, Libelo EL (2010) Concentrations, distribution, and persistence of perfluoroalkylates in sludge-applied soils near Decatur, Alabama, USA. Environ Sci Technol 44:8390–8396

    Article  CAS  Google Scholar 

  • Weber AK, Barber LB, Leblanc DR, Sunderland EM, Vecitis CD (2017) Geochemical and hydrologic factors controlling subsurface transport of poly- and perfluoroalkyl substances, Cape Cod, Massachusetts. Environ Sci Technol 51:4269–4279

    Article  CAS  Google Scholar 

  • Wei C, Wang Q, Song X, Chen X, Fan R, Ding D, Liu Y (2018) Distribution, source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas. Ecotoxicol Environ Saf 152:141–150

    Article  CAS  Google Scholar 

  • Weiner B, Yeung LWY, Marchington EB, D’Agostino LA, Mabury SA (2013) Organic fluorine content in aqueous film forming foams (AFFFs) and biodegradation of the foam component 6: 2 fluorotelomermercaptoalkylamido sulfonate (6: 2 FTSAS). Environ Chem 10:486–493

    Article  CAS  Google Scholar 

  • Weiss O, Wiesmueller GA, Bunte A, Coeen T, Schmidt CK, Wilhelm M, Hoelzer J (2012) Perfluorinated compounds in the vicinity of a fire training area - human biomonitoring among 10 persons drinking water from contaminated private wells in Cologne, Germany. Int J Hyg Environ Health 215:212–215

    Article  CAS  Google Scholar 

  • Xiao F, Simcik MF, Halbach TR, Gulliver JS (2015) Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a US metropolitan area: migration and implications for human exposure. Water Res 72:64–74

    Article  CAS  Google Scholar 

  • Xing Y, Li Q, Chen X, Fu X, Ji L, Wang J, Li T, Zhang Q (2021) Different transport behaviors and mechanisms of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in saturated porous media. J Hazard Mater 402:123435

    Article  CAS  Google Scholar 

  • Xu C, Liu Z, Song X, Ding X, Ding D (2021a): Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in multi-media around a landfill in China: implications for the usage of PFASs alternatives. Science of the Total Environment 751

  • Xu C, Song X, Liu Z, Ding X, Chen H, Ding D (2021b): Occurrence, source apportionment, plant bioaccumulation and human exposure of legacy and emerging per- and polyfluoroalkyl substances in soil and plant leaves near a landfill in China. Science of the Total Environment 776

  • Yamazaki E, Taniyasu S, Wang X, Yamashita N (2021): Per- and polyfluoroalkyl substances in surface water, gas and particle in open ocean and coastal environment. Chemosphere 272

  • Yeung LWY, Mabury SA (2016) Are humans exposed to increasing amounts of unidentified organofluorine? Environ Chem 13:102–110

    Article  CAS  Google Scholar 

  • Yeung LWY, De Silva AO, Loi EIH, Marvin CH, Taniyasu S, Yamashita N, Mabury SA, Muir DCG, Lam PKS (2013) Perfluoroalkyl substances and extractable organic fluorine in surface sediments and cores from Lake Ontario. Environ Int 59:389–397

    Article  CAS  Google Scholar 

  • Yiran Z, Ziyu Z, Yujing L, Xin S, Yongning W, Luqin Q, Minglin W (2021) Source, transportation, bioaccumulation, distribution and food risk assessment of perfluorinated alkyl substances in vegetables: a review. Food Chem 349:129137–129137

    Article  Google Scholar 

  • Yong ZY, Kim KY, Oh J-E (2021a) The occurrence and distributions of per- and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018. Environ Pollut 268:115395

    Article  CAS  Google Scholar 

  • Yu N, Guo H, Yang J, Jin L, Wang X, Shi W, Zhang X, Yu H, Wei S (2018) Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China. Environ Sci Technol 52:8205–8214

    Article  CAS  Google Scholar 

  • Zhang S, Lu X, Wang N, Buck RC (2016) Biotransformation potential of 6:2 fluorotelomer sulfonate (6:2 FTSA) in aerobic and anaerobic sediment. Chemosphere 154:224–230

    Article  CAS  Google Scholar 

  • Zhang C, Hopkins ZR, McCord J, Strynar MJ, Knappe DRU (2019a) Fate of per- and polyfluoroalkyl ether acids in the total oxidizable precursor assay and implications for the analysis of impacted water. Environ Sci Technol Lett 6:662–668

    Article  CAS  Google Scholar 

  • Zhang X, Lohrnann R, Sunderland EM (2019b) Poly- and perfluoroalkyl substances in seawater and plankton from the northwestern Atlantic margin. Environ Sci Technol 53:12348–12356

    Article  CAS  Google Scholar 

  • Zhang B, He Y, Huang Y, Hong D, Yao Y, Wang L, Sun W, Yang B, Huang X, Song S, Bai X, Guo Y, Zhang T, Sun H (2020a) Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: the emergence of PFAS alternatives in China. Environ Pollut 263:114461

    Article  CAS  Google Scholar 

  • Zhang R, Li TG, Russell J, Zhang F, Xiao X, Cheng YX, Liu ZY, Guan ML, Han Q (2020b): Source apportionment of polycyclic aromatic hydrocarbons in continental shelf of the East China Sea with dual compound-specific isotopes (delta C-13 and delta H-2). Science of the Total Environment 704

  • Zhang B, He Y, Yang G, Chen B, Yao Y, Sun H, Kannan K, Zhang T (2021): Legacy and emerging poly- and perfluoroalkyl substances in finless porpoises from East China Sea: Temporal trends and tissue-specific accumulation. Environmental science & technology

  • Zhao L, Bian J, Zhang Y, Zhu L, Liu Z (2014) Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals. Chemosphere 114:51–58

    Article  CAS  Google Scholar 

  • Zhao S, Liu T, Zhu L, Yang L, Zong Y, Zhao H, Hu L, Zhan J (2021): Formation of perfluorocarboxylic acids (PFCAs) during the exposure of earthworms to 6:2 fluorotelomer sulfonic acid (6:2 FTSA). Science of the Total Environment 760

  • Zheng P, Liu M, Yin H, Shen L, Wang Y, Wu Q (2020) Analysis of 58 poly-/perfluoroalkyl substances and their occurrence in surface water in a high-technology industrial park. Environ Pollut 267:115381

    Article  CAS  Google Scholar 

  • Zhong H, Zheng M, Liang Y, Wang Y, Gao W, Wang Y, Jiang G (2021) Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea: occurrence, source apportionment and environmental risk assessment. Chemosphere 282:131042–131042

    Article  CAS  Google Scholar 

  • Zhou J, Li S, Liang X, Feng X, Wang T, Li Z, Zhu L (2021): First report on the sources, vertical distribution and human health risks of legacy and novel per- and polyfluoroalkyl substances in groundwater from the Loess Plateau, China. Journal of Hazardous Materials 404

  • Zhu X, Jin L, Yang J, Wu J, Zhang B, Zhang X, Yu N, Wei S, Wu J, Yu H (2017) Perfluoroalkyl acids in the water cycle from a freshwater river basin to coastal waters in eastern China. Chemosphere 168:390–398

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (NSFC 41977310) and State Key Laboratory of Organic Geochemistry, GIGCAS (Grant No. SKLOG202022).

Author information

Authors and Affiliations

Authors

Contributions

Zhen Zhao: conceptualizing the idea, writing the draft, and editing.

Jie Li: searching the papers, revising the tables, and formatting.

Xianming Zhang: revising, reviewing and editing.

Leien Wang: drawing the figures, and reviewing.

Jiamin Wang: collecting data.

Tian Lin: resources, and project administration.

Corresponding author

Correspondence to Zhen Zhao.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

All authors have approved the manuscript and agree with submission to Environmental Science and Pollution Research (ESPR).

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Roland Peter Kallenborn

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Li, J., Zhang, X. et al. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater: current understandings and challenges to overcome. Environ Sci Pollut Res 29, 49513–49533 (2022). https://doi.org/10.1007/s11356-022-20755-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20755-4

Keywords

Navigation