Skip to main content

Advertisement

Log in

The ameliorative effect of kaempferol against CdCl2- mediated renal damage entails activation of Nrf2 and inhibition of NF-kB

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study evaluated the nephroprotective effect of kaempferol against cadmium chloride (CdCl2) -induced nephropathy in rats. It also investigated if activation of Nrf2 is a common mechanism of action. Adult male rats ((150 ± 15 g) were divided into 4 groups (n = 8/each) as a control (1% DMSO, orally), control + kaempferol (200 mg/kg, orally), CdCl2 (50 mg/l in drinking water), and CdCl2 + kaempferol (200 mg/kg)-treated rats. All treatments were conducted for 8 weeks. Kaempferol significantly attenuated CdCl2-induced weight loss, reduction in kidney weights, and the injury in the glomeruli, proximal tubules, and distal tubules in the treated rats. It also significantly lowered serum levels of urea and creatinine, increased urine output and urinary creatinine levels and clearance but reduced urinary levels of albumin urinary albumin exertion (UAER), and urinary albumin/creatinine ratio (UACR) in these rats. In parallel, kaempferol downregulated renal levels of cleaved caspase-3 and Bax and unregulated those of Bcl2. In the kidney tissues of the control animals and CdCl2 rats, kaempferol significantly attenuated oxidative stress, inflammation and significantly boosted levels of manganese superoxide dismutase and glutathione. Also, and in both groups, kaempferol suppressed the nuclear levels of NF-κB p65, downregulated Keap1, and stimulated the nuclear activation and protein levels of Nrf2. In conclusion, kaempferol is a potential therapeutic drug to prevent CdCl2-induced nephropathy due to its anti-inflammatory and anti-oxidant effects mediated by suppressing NF- NF-κB p65 and transactivating Nrf2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the outcomes of this study are included within the article.

References

  • Afkarian M, Zelnick LR, Hall YN, Heagerty PJ, Tuttle K, Weiss NS, de Boer IH (2016) Clinical manifestations of kidney disease among US adults with diabetes, 1988–2014. JAMA 316:602–610

    Article  Google Scholar 

  • Al-Brakati A, Albarakati AJA, Lokman MS, Theyab A, Algahtani M, Menshawi S, AlAmri OD, Al Omairi NE, Essawy EA, Kassab RB, Abdel Moneim AE (2021) Possible role of kaempferol in reversing oxidative damage, inflammation, and apoptosis-mediated cortical injury following cadmium exposure. Neurotox Res 39:198–209

    Article  CAS  Google Scholar 

  • Ali AS, Almalki AS, Alharthy BT (2020) Effect of kaempferol on tacrolimus-induced nephrotoxicity and calcineurin B1 expression level in animal model. J Exp Pharmacol 12:397–407

    Article  CAS  Google Scholar 

  • Almeer RS, AlBasher GI, Alarifi S, Alkahtani S, Ali D, Abdel Moneim AE (2019) Royal jelly attenuates cadmium-induced nephrotoxicity in male mice. Sci Rep 9:5825

    Article  CAS  Google Scholar 

  • Al-Numair KS, Chandramohan G, Veeramani C, Alsaif MA (2015) Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced diabetic rats. Redox Rep 20:198–209

    Article  CAS  Google Scholar 

  • Alshehri AS, El-Kott AF, El-Kenawy AE, Khalifa HS, AlRamlawy AM (2021) Cadmium chloride induces non-alcoholic fatty liver disease in rats by stimulating miR-34a/SIRT1/FXR/p53 axis. Sci. Total Environ. 784:147182

    Article  CAS  Google Scholar 

  • Alshehri AS, El-Kott AF, El-Gerbed MSA, El-Kenawy AE, Albadrani GM, Khalifa HS (2022) Kaempferol prevents cadmium chloride-induced liver damage by upregulating Nrf2 and suppressing NF-κB and keap1. Environ Sci Pollut Res Int 29:13917–13929

    Article  CAS  Google Scholar 

  • Alshehri AS (2021): Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis. Arch. Physiol. Biochem., 1–14

  • Alsuwaida AO, Farag YM, Al Sayyari AA, Mousa D, Alhejaili F, Al-Harbi A, Housawi A, Mittal BV, Singh AK (2010) Epidemiology of chronic kidney disease in the Kingdom of Saudi Arabia (SEEK-Saudi investigators) — a pilot study. Saudi J Kidney Dis Transpl 21:1066–1072

    Google Scholar 

  • Bao RK, Zheng SF, Wang XY (2017) Selenium protects against cadmium-induced kidney apoptosis in chickens by activating the PI3K/AKT/Bcl-2 signaling pathway. Environ Sci Pollut Res Int 24:20342–20353

    Article  CAS  Google Scholar 

  • Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et biophysica acta. Mol Cell Res 1865:721–733

    CAS  Google Scholar 

  • Bernard A, Viau C, Lauwerys R (1983) Renal handling of human beta 2-microglobulin in normal and cadmium-poisoned rats. Arch Toxicol 53:49–57

    Article  CAS  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    Article  CAS  Google Scholar 

  • Brzóska MM, Borowska S, Tomczyk M (2016) Antioxidants as a potential preventive and therapeutic strategy for cadmium. Curr Drug Targets 17:1350–1384

    Article  CAS  Google Scholar 

  • Campbell MT, Dagher P, Hile KL, Zhang H, Meldrum DR, Rink RC, Meldrum KK (2008) Tumor necrosis factor-alpha induces intrinsic apoptotic signaling during renal obstruction through truncated bid activation. J Urol 180:2694–2700

    Article  CAS  Google Scholar 

  • Deshmukh P, Unni S, Krishnappa G, Padmanabhan B (2017) The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev 9:41–56

    Article  CAS  Google Scholar 

  • Devi KP, Malar DS, Nabavi SF, Sureda A, Xiao J, Nabavi SM, Daglia M (2015) Kaempferol and inflammation: from chemistry to medicine. Pharmacol Res 99:1–10

    Article  CAS  Google Scholar 

  • Diamond GL, Thayer WC, Klotzbach JM, Ingerman LD (2019) Urinary cadmium clearance, its relationship to glomerular filtration rate and implications for cadmium epidemiology. J Toxicol Environ Health A 82:1187–1198

    Article  CAS  Google Scholar 

  • El-Kott AF, Abd-Lateif AM, Khalifa HS, Morsy K, Ibrahim EH, Bin-Jumah M, Abdel-Daim MM, Aleya L (2020) Kaempferol protects against cadmium chloride-induced hippocampal damage and memory deficits by activation of silent information regulator 1 and inhibition of poly (ADP-Ribose) polymerase-1. Sci Total Environ. 728:138832

    Article  CAS  Google Scholar 

  • El-Kott AF, Alshehri AS, Khalifa HS, Abd-Lateif AM, Alshehri MA, El-Maksoud MMA, Eid RA, Bin-Meferij MM (2020b) Cadmium chloride induces memory deficits and hippocampal damage by activating the JNK/p(66)Shc/NADPH oxidase axis. Int J Toxicol 39:477–490

    Article  CAS  Google Scholar 

  • El-Kott AF, Bin-Meferij MM, Eleawa SM, Alshehri MM (2020c) Kaempferol protects against cadmium chloride-induced memory loss and hippocampal apoptosis by increased intracellular glutathione stores and activation of PTEN/AMPK induced inhibition of Akt/mTOR signaling. Neurochem Res 45:295–309

    Article  CAS  Google Scholar 

  • Fujiwara Y, Lee JY, Tokumoto M, Satoh M (2012) Cadmium renal toxicity via apoptotic pathways. Biol Pharm Bull 35:1892–1897

    Article  CAS  Google Scholar 

  • Gajjala PR, Sanati M, Jankowski J (2015) Cellular and molecular mechanisms of chronic kidney disease with diabetes mellitus and cardiovascular diseases as its comorbidities. Front Immunol 6:340

    Article  CAS  Google Scholar 

  • Galluzzi L et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541

    Article  Google Scholar 

  • Hagar H, Al Malki W (2014) Betaine supplementation protects against renal injury induced by cadmium intoxication in rats: role of oxidative stress and caspase-3. Environ Toxicol Pharmacol 37:803–811

    Article  CAS  Google Scholar 

  • Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, Hobbs FD (2016) Global prevalence of chronic kidney disease — a systematic review and meta-analysis. PLoS ONE 11:e0158765

    Article  CAS  Google Scholar 

  • Jiao D, Jiang Q, Liu Y, Ji L (2019) Nephroprotective effect of wogonin against cadmium-induced nephrotoxicity via inhibition of oxidative stress-induced MAPK and NF-kB pathway in Sprague Dawley rats. Hum Exp Toxicol 38:1082–1091

    Article  CAS  Google Scholar 

  • Joardar S, Dewanjee S, Bhowmick S, Dua TK, Das S, Saha A, De Feo V (2019): Rosmarinic acid attenuates cadmium-induced nephrotoxicity via inhibition of oxidative stress, apoptosis, inflammation and fibrosis. Int J Mol Sci 20

  • Kim YG, Byun J, Yoon D, Jeon JY, Han SJ, Kim DJ, Lee KW, Park RW, Kim HJ (2016) Renal protective effect of DPP-4 inhibitors in type 2 diabetes mellitus patients: a cohort study. J Diabetes Res 2016:1423191

    Article  CAS  Google Scholar 

  • Lee WK, Abouhamed M, Thévenod F (2006) Caspase-dependent and -independent pathways for cadmium-induced apoptosis in cultured kidney proximal tubule cells. Am J Physiol Renal Physiol 291:F823–F832

    Article  CAS  Google Scholar 

  • Lentini P, Zanoli L, Granata A, Signorelli SS, Castellino P, Dell’Aquila R (2017) Kidney and heavy metals — the role of environmental exposure (Review). Mol Med Rep 15:3413–3419

    Article  CAS  Google Scholar 

  • Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S, Kong AN (2008) Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol 76:1485–1489

    Article  CAS  Google Scholar 

  • Li C, Cheng L, Wu H, He P, Zhang Y, Yang Y, Chen J, Chen M (2018) Activation of the KEAP1-NRF2-ARE signaling pathway reduces oxidative stress in Hep2 cells. Mol Med Rep 18:2541–2550

    CAS  Google Scholar 

  • Liu L, Yang B, Cheng Y, Lin H (2015) Ameliorative effects of selenium on cadmium-induced oxidative stress and endoplasmic reticulum stress in the chicken kidney. Biol Trace Elem Res 167:308–319

    Article  CAS  Google Scholar 

  • Liu C, Zhu Y, Lu Z, Guo W, Tumen B, He Y, Chen C, Hu S, Xu K, Wang Y, Li L, Li S (2019): Cadmium induces acute liver injury by inhibiting Nrf2 and the role of NF-κB, NLRP3, and MAPKs signaling pathway. Int. J. Environ. Res. Public Health 17

  • Luo T, Liu G, Long M, Yang J, Song R, Wang Y, Yuan Y, Bian J, Liu X, Gu J, Zou H, Liu Z (2017) Treatment of cadmium-induced renal oxidative damage in rats by administration of alpha-lipoic acid. Environ Sci Pollut Res Int 24:1832–1844

    Article  CAS  Google Scholar 

  • Milnerowicz H, Bizoń A, Witt K, Antonowicz-Juchniewicz J, Andrzejak R (2008) Urinary N-acetyl-beta-D-glucosaminidase and its isoenzymes in smoking and non-smoking workers at copper foundry occupational co-exposed to arsenic cadmium and lead. Przegl Lek 65:518–521

    Google Scholar 

  • Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115

    Article  CAS  Google Scholar 

  • Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI, Jr. (2016) Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 473:4527–4550

    Article  CAS  Google Scholar 

  • Nezu M, Suzuki N, Yamamoto M (2017) Targeting the KEAP1-NRF2 system to prevent kidney disease progression. Am J Nephrol 45:473–483

    Article  CAS  Google Scholar 

  • Niture SK, Jaiswal AK (2012) Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem 287:9873–9886

    Article  CAS  Google Scholar 

  • Park MJ, Lee EK, Heo HS, Kim MS, Sung B, Kim MK, Lee J, Kim ND, Anton S, Choi JS, Yu BP, Chung HY (2009) The anti-inflammatory effect of kaempferol in aged kidney tissues: the involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinase pathways. J Med Food 12:351–358

    Article  CAS  Google Scholar 

  • Pastore D, Della-Morte D, Coppola A, Capuani B, Lombardo MF, Pacifici F, Ferrelli F, Arriga R, Mammi C, Federici M, Bellia A, Di Daniele N, Tesauro M, Donadel G, Noto D, Sbraccia P, Sconocchia G, Lauro D (2015) SGK-1 protects kidney cells against apoptosis induced by ceramide and TNF-α. Cell Death Dis 6:e1890

    Article  CAS  Google Scholar 

  • Pavón N, Buelna-Chontal M, Macías-López A, Correa F, Uribe-Álvarez C, Hernández-Esquivel L, Chávez E (2019) On the oxidative damage by cadmium to kidney mitochondrial functions. Biochem Cell Biol 97:187–192

    Article  CAS  Google Scholar 

  • Pollack AZ, Mumford SL, Mendola P, Perkins NJ, Rotman Y, Wactawski-Wende J, Schisterman EF (2015) Kidney biomarkers associated with blood lead, mercury, and cadmium in premenopausal women: a prospective cohort study. J Toxicol Environ Health A 78:119–131

    Article  CAS  Google Scholar 

  • Prozialeck WC, Edwards JR (2012) Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. J Pharmacol Exp Ther 343:2–12

    Article  CAS  Google Scholar 

  • Prozialeck WC, Vaidya VS, Liu J, Waalkes MP, Edwards JR, Lamar PC, Bernard AM, Dumont X, Bonventre JV (2007) Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity. Kidney Int 72:985–993

    Article  CAS  Google Scholar 

  • Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24:378–399

    Article  CAS  Google Scholar 

  • Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863:2977–2992

    Article  CAS  Google Scholar 

  • Satarug S (2018): Dietary cadmium intake and its effects on kidneys. Toxics 6

  • Saw CL, Guo Y, Yang AY, Paredes-Gonzalez X, Ramirez C, Pung D, Kong AN (2014) The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway. Food Chem Toxicol 72:303–311

    Article  CAS  Google Scholar 

  • Sharma D, Kumar Tekade R, Kalia K (2020) Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: an in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine 76:153235

    Article  CAS  Google Scholar 

  • Vargas F, Romecín P, García-Guillén AI, Wangesteen R, Vargas-Tendero P, Paredes MD, Atucha NM, García-Estañ J (2018) Flavonoids in kidney health and disease. Front Physiol 9:394

    Article  Google Scholar 

  • Wang SH, Shih YL, Lee CC, Chen WL, Lin CJ, Lin YS, Wu KH, Shih CM (2009) The role of endoplasmic reticulum in cadmium-induced mesangial cell apoptosis. Chem Biol Interact 181:45–51

    Article  CAS  Google Scholar 

  • Wang L, Lin SQ, He YL, Liu G, Wang ZY (2013) Protective effects of quercetin on cadmium-induced cytotoxicity in primary cultures of rat proximal tubular cells. Biomed Environ Sci 26:258–267

    Google Scholar 

  • Wang Z, Sun W, Sun X, Wang Y, Zhou M (2020) Kaempferol ameliorates cisplatin induced nephrotoxicity by modulating oxidative stress, inflammation and apoptosis via ERK and NF-κB pathways. AMB Express 10:58

    Article  CAS  Google Scholar 

  • Wardyn JD, Ponsford AH, Sanderson CM (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans 43:621–626

    Article  CAS  Google Scholar 

  • Wu KC, Liu JJ, Klaassen CD (2012) Nrf2 activation prevents cadmium-induced acute liver injury. Toxicol Appl Pharmacol 263:14–20

    Article  CAS  Google Scholar 

  • Yuan Y, Ma S, Qi Y, Wei X, Cai H, Dong L, Lu Y, Zhang Y, Guo Q (2016) Quercetin inhibited cadmium-induced autophagy in the mouse kidney via inhibition of oxidative stress. J Toxicol Pathol 29:247–252

    Article  CAS  Google Scholar 

  • Zhang N, Zhao S, Hong J, Li W, Wang X (2019) Protective effects of kaempferol on D-ribose-induced mesangial cell injury. Oxid Med Cell Longev 2019:7564207

    Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the deanship of Scientific Research at King Khalid University, Abha, KSA, under grant number (R.G.P2 /35/43). Also, this research was funded by the Taif University Researchers Supporting program under grant number (TURSP-2020/99), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

ASA, AFE, and AEE: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Supervision, Project administration, Funding acquisition, Writing—original draft. MSAZ, KM, RAG, MAD, MSM, and ETS: Conceptualization, Validation, Formal analysis, Investigation, Writing—original draft. ERE, EHI, HSK and AEA, MSM, HIMA: Conceptualization, Investigation, Methodology, Writing—review & editing. ASA, AFE, AEE, and EMA: Investigation, Methodology, Writing—review & editing.

Corresponding author

Correspondence to Attalla F. El-Kott.

Ethics declarations

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals and cell lines were followed and approved by the ethics committee at King Khalid University.

Consent to participate

All authors equally participate in the study.

Consent for publication

All authors allow the publication of the paper.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshehri, A.S., El-Kott, A.F., El-Kenawy, A.E. et al. The ameliorative effect of kaempferol against CdCl2- mediated renal damage entails activation of Nrf2 and inhibition of NF-kB. Environ Sci Pollut Res 29, 57591–57602 (2022). https://doi.org/10.1007/s11356-022-19876-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19876-7

Keywords

Navigation