Skip to main content

Advertisement

Log in

Experimental and material characterization of composites, including waste iron and marble powder

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to its fine particle size, waste marble slurry originating in cutting and processing units mixes into the air after drying, causing environmental and health problems in nearby areas. On the other hand, large amounts of iron particles are generated as metalworking industry waste, affecting the environmental system. In this study, 0%, 10%, and 20% marble powder (instead of cement) and iron particles (instead of fine aggregate) were used in mixtures, and the composites produced were subjected to two different curing periods: 7 and 28 days. The physical, mechanical, microstructural, and thermal properties of the fresh and hardened composites were ascertained via bulk density, consistency, porosity, water absorption, capillary water absorption, strength tests, particle size distribution, X-ray diffraction (XRF), X-ray fluorescence (XRF), scanning electron microscopy and energy dispersive spectroscopy (SEM–EDS), and thermogravimetric analyses (TGA). The results revealed that minimum water absorption (8.5%) and porosity (19.8%) values were achieved in 28-day composites produced with 10% marble–20% iron wastes among all composites. Thus, iron particles substituted for natural aggregates were mainly responsible for the increase in mechanical performance. A maximum flexural strength of 5.9 MPa and a compressive strength of 26.7 MPa were observed in 28-day composites containing 0% marble–20% iron wastes. Furthermore, capillary water absorption tended to decrease with the substitution of 10% marble powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

Nihan Gülmez: conceptualization; investigation; methodology; resources; visualization; writing — original draft; writing — review and editing.

Corresponding author

Correspondence to Nihan Gülmez.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gülmez, N. Experimental and material characterization of composites, including waste iron and marble powder. Environ Sci Pollut Res 29, 51927–51941 (2022). https://doi.org/10.1007/s11356-022-19557-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19557-5

Keywords

Navigation